
Chapter 21: Algorithms and Maps

 2

Plan for today

● We will talk about:
– Associative containers:

● map,
● set,
● unordered_map

– Standard algorithms
● copy, sort, …
● Input iterators and output iterators

 3

Map (an associative array)

● For a vector, we subscript using an integer
● For a map, we can define the subscript to be (just about) any type

 4

Map (an associative array)

● For a vector, we subscript using an integer
● For a map, we can define the subscript to be (just about) any type

int main()
{

map<string,int> words; // keep (word,frequency) pairs
for (string s; cin>>s;)

++words[s]; // note: words is subscripted by a string
 // words[s] returns an int&
 // the int values are initialized to 0

for (const auto& p : words)
cout << p.first << ": " << p.second << "\n";

}

Key type Value type

 5

Map

● After vector, map is the most useful standard library container
– Maps (and/or hash tables) are the backbone of scripting languages

● A map is really an ordered balanced binary tree
– By default ordered by < (less than)

 6

Map

● After vector, map is the most useful standard library container
– Maps (and/or hash tables) are the backbone of scripting languages

● A map is really an ordered balanced binary tree
– By default ordered by < (less than)
– For example, map<string,int> fruits;

Key first
Value second

Node* left
Node* right

…

 map nodeOrange 99

Plum 8Kiwi 2345Apple 7

Quince 0Grape 100

fruits

 7

Map
// do you see some similarity to vector and list?

template<class Key, class Value> class map {
// …
using value_type = pair<Key,Value>; // a map deals in (Key,Value) pairs

using iterator = ???; // probably a pointer to a tree node
using const_iterator = ???;

iterator begin(); // points to first element
iterator end(); // points to one beyond the last element

Value& operator[](const Key&); // get Value for Key
iterator find(const Key& k); // is there an entry for k?
void erase(iterator p); // remove element pointed to by p
pair<iterator, bool> insert(const value_type&); // insert new

 // (Key,Value) pair, the bool is false if insert failed
// …

};

 8

Map

● Let’s see some work in mapExamples.cpp

 9

Containers and “almost containers”

● Sequence containers
– vector, list, deque

● Associative containers
– map, set, multimap, multiset

● “almost containers”
– array, string, stack, queue, priority_queue, bitset

● New C++11 standard containers
– unordered_map (a hash table), unordered_set, …

 10

Containers and “almost containers”

● For anything non-trivial, consult documentation
– Online

● SGI, RogueWave, Dinkumware
– Other books
– Stroustrup: The C++ Programming language 4th ed. (Chapters 30-33,

40.6)
– Austern: Generic Programming and the STL
– Josuttis: The C++ Standard Library

 11

Set

● A set is really an ordered balanced binary tree
– By default ordered by <
– For example, set<string> fruits;

Orange

PlumKiwiApple

QuinceGrape

Key first

Node* left
Node* right

…

set node
fruits

 12

Set

● Sets are useful for checking if a value is present
– e.g., keeping a track of which fruits are available

● Sets do not support subscripting (operator[]), nor push_back()
● Use “list operations”:

– insert()
– erase()

● We can use the value obtained from the iterator directly

(since there is no <key,value> pair)
● See an example of its use in setExample.cpp

 13

unordered_map

● unordered_map is using hash table to have fast access
– (look up is O(1))
– The elements are not ordered

● Very useful if a lot of lookup is projected in a large map, and we don’t
need an ordered traversal

● The use is similar to that of map
● Python dict and C++ unordered_map are similar (modulo type of

elements)

 14

Some useful standard algorithms

● r = find(b,e,v)
– r points to the first occurrence of v in [b,e)

● r = find_if(b,e,p)
– r points to the first element x in [b,e) for which p(x)

● x = count(b,e,v)
– x is the number of occurrences of v in [b,e)

● x = count_if(b,e,p)
– x is the number of elements in [b,e) for which p(x)

● sort(b,e)
– sort [b,e) using <

● sort(b,e,p)
– sort [b,e) using p

 15

Some useful standard algorithms (continues)

● copy(b,e,b2)

– copy [b,e) to [b2,b2+(e-b)); there had better be enough space after b2
● unique_copy(b,e,b2)

– copy [b,e) to [b2,b2+(e-b)), but don’t copy adjacent duplicates
● merge(b,e,b2,e2,r)

– merge two sorted sequence [b2,e2) and [b,e) into [r,r+(e-b)+(e2-b2))
● r = equal_range(b,e,v)

– r is the subsequence of [b,e) with the value v (basically a binary
search for v)

● equal(b,e,b2)

– do all elements of [b,e) and [b2,b2+(e-b)) compare equal?

 16

copy_if()

// a very useful algorithm (missing from the standard library):

template<class In, class Out, class Pred>
Out copy_if(In first, In last, Out res, Pred p)

// copy elements that fulfill the predicate
{

while (first != last)
 {

if (p(*first))
 *res++ = *first;

++first;
}
return res;

}

 17

copy_if()

// example of copy_iff() use:

void f(const vector<int>& v) // “typical use” of predicate with data
 // copy all elements with a value less than 6

{
vector<int> v2(v.size());

copy_if(v.begin(), v.end(), v2.begin(),
[](int x) { return x<6; });

// …
}

 18

In-class work

Let’s write a program that given a vector of integer values, that are ages of
people, will tell us how many people of each age mentioned in the vector there
are.
We were told that the vector values are not sorted.
We are asked not to use the sorting procedure, as it is “too expensive” (usually
O(n log n)).
Instead they want us to “walk through the values of the vector only once.

 19

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

