

Exception Handling:
A Deeper Look

Chapter 17

Today we will discuss

● Exceptions: throwing and catching

● Exception class definition

● unique_ptr

Exceptions

C++ provides a mechanism to help deal with errors:
exceptions.

Detection of an error and its handling are separated.

Exceptions

C++ provides a mechanism to help deal with errors:
exceptions.

Detection of an error and its handling are separated.

Detection of an error: if a function finds an error that it cannot
handle, it should not return normally. Instead, it throws an
exception indicating what went wrong.

Handling: the try-block is used to catch the exception.

Exceptions

The header <stdexcept> defines a set of standard
exceptions that both the library and programs can use to
report common errors.

They are divided in two sets:

Exceptions

The header <stdexcept> defines a set of standard
exceptions that both the library and programs can use to
report common errors.

They are divided in two sets:
Logic errors
logic_error logic error exception
domain_error domain error exception
invalid_argument invalid argument exception
length_error length error exception
out_of_range out-of-range exception

Exceptions

The header <stdexcept> defines a set of standard
exceptions that both the library and programs can use to
report common errors.

They are divided in two sets:
Logic errors
logic_error logic error exception
domain_error domain error exception
invalid_argument invalid argument exception
length_error length error exception
out_of_range out-of-range exception

Runtime errors
runtime_error runtime error exception
range_error range error exception
overflow_error overflow error exception
underflow_error underflow error exception

Exceptions: standard streams

By default, standard streams (iostream) don’t throw
exceptions, but they have stream error states we covered in
Section 13.8.

Boost.org provides a library that supports exceptions.

See examples in catchingAndThrowingExceptions.cpp

https://www.boost.org/doc/libs/1_74_0/libs/iostreams/doc/guide/exceptions.html#standard_iostreams

Defining and Exception Class

Let’s see how can we define an exception class:

● we can inherit from the existing exception classes, or
● we can avoid using the existing exception class

See these two examples:
definingExceptionClass.cpp
definingExceptionClass2.cpp

Re-throwing the exception

In some situations we might need to re-throw the exceptions.

For example: When working with a file, an exception
occurred. Upon this, we want to close the file (by the
handler) and notify the caller that there was an issue by re-
throwing the exception.

Syntax:
throw;

Re-throwing the exception

In some situations we might need to re-throw the exceptions.

For example: When working with a file, an exception
occurred. Upon this, we want to close the file (by the
handler) and notify the caller that there was an issue by re-
throwing the exception.

Syntax:
throw;

See an example in rethrowingException.cpp
Note: for this example, we use class exception, the C++
standard base exception class. runtime_error,
logic_error, invalid_argument classes and many
others are its derived classes.

Standard Library Exception Hierarchy

The C++ Standard Library includes a hierarchy of exception
classes, some of them are:

exception

runtime_error logic_error

overflow_error

underflow_error

invalid_argument

length_error

out_of_range

bad_alloc

bad_cast

bad_type_id

bad_exception
The base-class exception contains the virtual function what that
derived class can override to issue an appropriate error message.

Stack Unwinding

When an exception is thrown, but not caught in a particular
scope, the function-call stack is “unwound”, and an attempt
is made to catch the exception in the next outer try-catch
block.

It means that the function, in which the exception was not
caught, terminates: all local variables that have completed
initialization are destroyed and the control returns to the
statement that invoked the function originally.

If a try-catch block is located, the attempt is made to
catch the exception.
If not, stack unwinding occurs again.

And so forth, up to the program termination.

see stackUnwinding.cpp

When to Use Exception Handling

Exception handling is designed to process synchronous
errors that occur when a statement executes, such as invalid
function parameters and unsuccessful memory allocation.

Exception handling is not designed to process errors
associated with asynchronous events that occur in parallel
with, and independent of, the program’s flow of control.
Examples: disk I/O completions, network message arrivals,
mouse clicks and keyboard keys pressed. They occur in
parallel

When to Use Exception Handling

Exception handling provides a single, uniform technique for
processing problems. This helps programmers on large
projects to understand each other’s error-processing code.

It also enables predefined software components (like
Standard Library classes) to communicate problems to
application-specific components, which can then process the
problems in an application-specific manner.

Functions That Do Not Throw Exceptions

Starting from C++ 11, if a function does not throw any
exceptions and does not call any functions that throw
exceptions, we can explicitly state it:

bool func(int a, double b) noexcept;

bool f2(int a) const noexcept;

* use in both, the prototype and the definition

Constructors, Destructors and Exception Handling

Constructors do not return a value, hence we can

● return an improperly constructed object and expect that
anyone using it would determine that it is in incomplete
state,

Constructors, Destructors and Exception Handling

Constructors do not return a value, hence we can

● return an improperly constructed object and expect that
anyone using it would determine that it is in incomplete
state,

or

● set some variable outside the constructor to indicate that
something went wrong

Constructors, Destructors and Exception Handling

Constructors do not return a value, hence we can

● return an improperly constructed object and expect that
anyone using it would determine that it is in incomplete
state,

or

● set some variable outside the constructor to indicate that
something went wrong

or

● require the constructor to throw an exception that contains
the error information, which allows the program to handle
the failure.

Constructors, Destructors and Exception Handling

If an exception is thrown before the object is fully
constructed, destructors will be called for any member
objects that have been constructed so far.

Constructors, Destructors and Exception Handling

If an exception is thrown before the object is fully
constructed, destructors will be called for any member
objects that have been constructed so far.

If an array of objects is partially constructed, and an
exception occurs, only the destructors for the array’s
constructed objects will be called.

Constructors, Destructors and Exception Handling

If an exception is thrown before the object is fully
constructed, destructors will be called for any member
objects that have been constructed so far.

If an array of objects is partially constructed, and an
exception occurs, only the destructors for the array’s
constructed objects will be called.

Also, destructors are called for every automatic object
constructed by the try block before an exception that
occurred in that block is caught.

Constructors, Destructors and Exception Handling

Do not throw exception from the constructor of a global
object or a static local object. Such exception cannot be
caught, because they are constructed before the main
function executes.

Do not forget to release resource, such as dynamically
allocated memory, files, etc.

unique_ptr and Dynamic Memory Allocation

If an exception occurs after successful memory allocation,
but before the delete statement executes, the memory leak
could occur.

unique_ptr and Dynamic Memory Allocation

If an exception occurs after successful memory allocation,
but before the delete statement executes, the memory leak
could occur.

C++ 11 provides class template unique_ptr in header
<memory>.

unique_ptr and Dynamic Memory Allocation

If an exception occurs after successful memory allocation,
but before the delete statement executes, the memory leak
could occur.

C++ 11 provides class template unique_ptr in header
<memory>.

A unique_ptr maintains a pointer to dynamically allocated
memory. When the unique_ptr object goes out of scope,
its destructor is called, which performs delete or
delete[] operation on the unique_ptr’s pointer data
member.

unique_ptr and Dynamic Memory Allocation

If an exception occurs after successful memory allocation,
but before the delete statement executes, the memory leak
could occur.

C++ 11 provides class template unique_ptr in header
<memory>.

A unique_ptr maintains a pointer to dynamically allocated
memory. When the unique_ptr object goes out of scope,
its destructor is called, which performs delete or
delete[] operation on the unique_ptr’s pointer data
member.

Class template unique_ptr provides overloaded operators
* and → so that a unique_ptr object can be used just like
a regular pointer object.

unique_ptr and Dynamic Memory Allocation

Only one unique_ptr at time can own a dynamically
allocated object.

unique_ptr and Dynamic Memory Allocation

Only one unique_ptr at time can own a dynamically
allocated object.

When assigning one unique_ptr to another, using move,
the one on the right transfers ownership of the dynamic
memory in manages to the one on the left of the assignment.

When passing a unique_ptr as an argument to another
unique_ptr constructor, the ownership is transferred as
well.

unique_ptr and Dynamic Memory Allocation

Only one unique_ptr at time can own a dynamically
allocated object.

When assigning one unique_ptr to another, using move,
the one on the right transfers ownership of the dynamic
memory in manages to the one on the left of the assignment.

When passing a unique_ptr as an argument to another
unique_ptr constructor, the ownership is transferred as
well.

The “last” unique_ptr object that maintains the pointer to
the dynamic memory will delete the memory.

See someClass.h and unique_ptrExample.cpp

HW assignment
(1) Consider the following program:
#include <iostream>
using namespace std;
int main()
{

int donuts, milk;
double dpg;
try
{

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;

if (milk <= 0)
throw donuts;

dpg = donuts / static_cast<double>(milk);
cout << donuts << " donuts.\n"

<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";

}
catch (int e)
{

cout << e << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";

}
cout << "End of program.\n";
return 0;

}

Without running the
program, what will be
the output if 4 and 0 are
entered when the
program is run?

HW assignment

(2) Consider the following code fragment:
#include <iostream>
#include <memory>

class Task
{
public:
 int mId;
 Task(int id) :mId(id)
 { std::cout<<"Task::Constructor"<<std::endl; }
 ~Task()
 { std::cout<<"Task::Destructor"<<std::endl; }
};

int main()
{
 // Create a unique_ptr object through raw pointer
 std::unique_ptr<Task> taskPtr{ std::make_unique<Task>(23) };
 //Access the element through unique_ptr
 int id = taskPtr->mId;
 std::cout<<id<<std::endl;
 return 0;
}

Without running the program, what will be the output when it is run ?

HW assignment

Self-Study:
Section 17.8

Suggested Practice:
Chapter 17 Summary and Self-Review Exercises

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

