
  

Standard Library Algorithms

Chapter 16



  

Today we will discuss

● Minimum Iterator Requirements

● Lambda Expressions

● Algorithms

● Function objects



  

Minimum Iterator Requirements

The Standard Library separates algorithms from containers, 
with few exceptions.

The separation allows to add new algorithms and to use 
them on different containers.



  

Minimum Iterator Requirements

The Standard Library separates algorithms from containers, 
with few exceptions.

The separation allows to add new algorithms and to use 
them on different containers.

We discussed in the previous class that iterators are 
implemented for each type of the container. The type of the 
iterator defines which algorithms can be applied to the 
container.

If an algorithm requires forward iterator, then that algorithm 
will only be able to operate on the containers that support 
forward iterators, bidirectional iterators, or random-access 
iterators.



  

Minimum Iterator Requirements

Iterator invalidation

Since iterators simply point to container elements, it is 
possible for them to become invalid when a certain container 
modification occurs.

For example, if we call the clear() on a vector, all its 
elements will be destroyed and any iterators that were 
pointing to elements will be invalid now.



  

Minimum Iterator Requirements

Iterator invalidation when inserting into a/an:

● vector
all iterators are invalidated if the vector is reallocated;
if no reallocation happens, the iterators from the insertion 
point to the end of the vector are invalidated

● deque
all iterators are invalidated

● list or forward_list
all iterators remain valid

● ordered associative container
all iterators remain valid

● unordered associative container
all iterators are invalidated if the container is reallocated



  

Minimum Iterator Requirements

When erasing from a container, iterators to the erased 
elements are invalidated.

In addition, for a

● vector
the iterators from the erased element to the end of the 
vector are invalidated

● deque
if an element in the middle of the deque is erased, all 
iterators are invalidated



  

Algorithm for_each
defined in header <algorithm>

template< class InputIt, class UnaryFunction >
UnaryFunction for_each( InputIt first, InputIt 
last, UnaryFunction f );
(until C++20)

template< class InputIt, class UnaryFunction >
constexpr UnaryFunction for_each( InputIt first, 
InputIt last, UnaryFunction f );
(since C++20)

template< class ExecutionPolicy, class ForwardIt, 
class UnaryFunction2 >
void for_each( ExecutionPolicy&& policy, ForwardIt 
first, ForwardIt last, UnaryFunction2 f );
(since C++17)

Template algorithm for_each calls a function to perform a task once 
for each element of the container.



  

Algorithm for_each
defined in header <algorithm>

Template algorithm for_each calls a function to perform a task once 
for each element of the container.

for_each(myV.begin(), myV.end(),  …. )



  

Lambda Expressions

Many Standard Library algorithms may receive function 
pointers as parameters



  

Lambda Expressions

Many Standard Library algorithms may receive function 
pointers as parameters, since function name is easily 
convertible to a pointer to that function’s code.

Before we can pass a function pointer to an algorithm, a 
corresponding function must be declared.



  

Lambda Expressions

Many Standard Library algorithms may receive function 
pointers as parameters, since function name is easily 
convertible to a pointer to that function’s code.

Before we can pass a function pointer to an algorithm, a 
corresponding function must be declared.

Starting from C++ 11 there is a convenient shorthand 
notation, using lambda expressions, for creating functions 
without names, called anonymous functions. 

Lambda expressions can be used instead of the function 
pointers.



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] <tparams> (params) specifiers 
exception attr -> ret requires {body}

The one we will mostly use today:
[captures] (params) {body}



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] (params)  {body}

[ ] is the lambda introducer

captures is a comma separated list of captures, i.e. local 
variables of the function from which the lambda is defined; it 
can be empty

params is the list of parameters; if auto is used as a type of 
a parameter, its type is to be “inferred” by the compiler (since 
C++14, called generic lambdas)



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] (params)  {body}

Examples: assume myV is a vector of integer values

for_each(myV.begin(), myV.end(), 
[](auto item) {cout << item << endl; });

no local variables are used



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] (params)  {body}

Examples: assume myV is a vector of integer values, and 
sum is a local variable initialized to 0.

for_each(myV.begin(), myV.end(), 
[&sum](auto item) { sum+= item; });

local variable is captured by reference



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] (params)  {body}

let’s see lambdasExamples.cpp for some work with lambda 
expressions



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] <tparams> (params) exception -> 
ret requires {body}

tparams is an optional template parameter list (since C++ 
20), that can be followed by 

requires clause that specifies the constraints on the 
template parameters (since C++ 20)



  

Lambda Expressions

Lambda expressions or simply lambdas are defined locally 
inside the functions and can use and manipulate local 
variables of the enclosing function.

Syntax:
[captures] <tparams> (params) exception -> 
ret requires {body}

exception provides the list of exceptions that might be 
directly or indirectly thrown

ret is return type; if not present it is implied by the function 
return statements, or void if it doesn't return any value



  

Algorithms

Let’s see some basic searching and sorting algorithms:

● find
● find_if
● sort
● binary_search

see basicSearchSortExamples.cpp 



  

Function Objects

We saw that Standard Library algorithms allow us to pass a 
lambda or a function pointer.



  

Function Objects

We saw that Standard Library algorithms allow us to pass a 
lambda or a function pointer.

The binary_search algorithm has an optional fourth 
parameter/argument, a binary predicate function with two 
arguments: search key and element from the collection. 
The function returns true if the search key and the element 
are equal, and false otherwise.  This enables the algorithm 
to search the collections where operator < is not provided for 
the elements of the collection.



  

Function Objects

We saw that Standard Library algorithms allow us to pass a 
lambda or a function pointer.

The binary_search algorithm has an optional fourth 
parameter/argument, a binary predicate function with two 
arguments: search key and element from the collection. 
The function returns true if the search key and the element 
are equal, and false otherwise.  This enables the algorithm 
to search the collections where operator < is not provided for 
the elements of the collection.

Any algorithm that can receive a lambda or a function pointer 
can also receive an object of class that overloads the 
function-call operator with a function named operator().

An object of such a class is called a function object and can 
be used like a lambda, a function, or a function pointer.



  

Function Objects

Let’s use the accumulate algorithm to find the sum of all the 
elements in a container using:

● function pointer

● lambda expression

● function object

see functionObjectExample_beginning.cpp



  

HW assignment

(1) Write a program that allows the user to play with two sets of 
integer values, with names A and B.
At the beginning of the program the user must be given an 
opportunity to enter the elements of the sets A and B.
Then he or she should be provided with a menu that will allow to:
● find the intersection of sets A and B
● find the union of sets A and B
● find the difference of sets A and B
● find the difference of sets B and A
● add the elements to the set A
● add the elements to the set B
● empty the set A
● empty the set B
● quit the program

After each iteration, the result must be displayed, and the user 
should be able to continue playing with the operations.



  

HW assignment

(2) Given a vector of decimal values, write the code that uses the 
algorithm for_each and finds the average of all the values in the 
vector. Here is the beginning of the program:

#include<iostream> 
#include<algorithm>
#include<vector>

using namespace std;

int main(){
vector<double> V = {1.1, 7.6, 2.3, 9.7, -3.2, -10.4, 
7.6, 12.3};
int s; // used to find the sum

for_each( 
// put the rest of the code
}

You must use lambda expression or function pointer



  

HW assignment

Self-Study:
Section 16.4

Suggested Practice:
Chapter 16 Summary and Self-Review Exercises



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

