
Recursion with C++
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Plan for today

● We will talk about:
– Definition of recursive function
– Call stack with function activation records
– Examples
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Recursive Functions

[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a 
program or recursively.
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[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a 
program or recursively.

Recursion concepts:
● every recursive function should have base case(s) 
● every recursive call/recursion step of a function should be to “solve a smaller 

problem”, which should eventually converge to a base case.
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Recursive Functions

[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a 
program or recursively.

Recursion concepts:
● every recursive function should have base case(s) 
● every recursive call/recursion step of a function should be to “solve a smaller 

problem”, which should eventually converge to a base case.

Some notes:
● often the recursive step includes the keyword return
● the recursion step executes while the original call to the function is still “open”
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Recursive Functions

Examples of structural recursion:

a bullseye

+
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Recursive Functions

Examples of structural recursion:

7-level pyramid

6-level pyramid

bottom level

+
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Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …
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Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …

[Def, recursive]
F(0)=0     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1 
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Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …

[Def, recursive]
F(0)=0     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  

unsigned long fibonacci(int n){

   if (n == 0 or n == 1) { return n;}

 else { 
  return fibonacci(n-1) + fibonacci(n-2);
   }
}
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Recursive Functions

[Def, recursive]
F(0)=0     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  

Let’s come up with an iterative version!
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Recursive Functions

[Def, recursive]
F(0)=0     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  

Let’s come up with an iterative version!
● Start with the first two Fibonacci numbers: 0 and 1,
● Grow them, one by one:

– the next one should be 0 + 1 = 2
– the next one should be 1+2 = 3
– the next one should be 2 + 3 = 5, etc

● Stop when n-1 iterations are performed (to get the n th Fibonacci number)
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Recursive Functions

[Def, recursive]
F(0)=0     (base case)
F(1)=1      (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1  

unsigned long fibonacci_it(int n) {
   unsigned long curr{ 1 }, prev{ 0 }, tmp;
   if (n == 0 or n == 1) { return n; }

   for (int i = 2; i <= n; i++) {
      tmp = curr;
      curr = curr + prev;
      prev = tmp;
   }
   return curr;
} 
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Recursive Functions

unsigned long fibonacci(int n){
   if (n == 0 or n == 1) { return n;}
   else {  return fibonacci(n-1) + fibonacci(n-2); }
}

unsigned long fibonacci_it(int n) {
   unsigned long curr{ 1 }, prev{ 0 }, tmp;
   if (n == 0 or n == 1) { return n; }

   for (int i = 2; i <= n; i++) {
      tmp = curr;
      curr = curr + prev;
      prev = tmp;
   }
   return curr;
} 

Let’s trace the call of fibonacci(5) 
and of fibonacci_it(5).
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Recursive Functions

let’s convert iterative version to recursive version!

unsigned long fibonacci_it(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }

    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}
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Recursive Functions

unsigned long fibonacci_it(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }

    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec

fib_rec_helper(

disassemble
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Recursive Functions

   {
    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(...) }}
    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(

disassemble
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Recursive Functions

   {
    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(...) }}
    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(

disassemble

all the changes - send through parameters of 
recursive function call

base case of the recursion
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Recursive Functions

   {
    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(...) }}
    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of 
recursive function call

base case of the recursion
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Recursive Functions

   {
    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n) }}
    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of 
recursive function call

base case of the recursion
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Recursive Functions

   {
    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n) }}
    for (int i = 2; i <= n; i++) {
        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

    return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of 
recursive function call

base case of the recursion
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Recursive Functions

unsigned long fib_rec(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n)  }
}

unsigned long fib_rec_helper(prev,curr,i,n)
    if (i == n) { return curr; }
    else { return fib_rec_helper(curr,prev+curr,i+1,n); }

        tmp = curr;
        curr = curr + prev;
        prev = tmp;
    }

all the changes -  send through 
parameters of recursive function call
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Recursive Functions

unsigned long fib_rec(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n)  }
}

unsigned long fib_rec_helper(prev,curr,i,n)
    if (i == n) { return curr; }
    else { return fib_rec_helper(curr,prev+curr,i+1,n); }
    }
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Recursive Functions

unsigned long fib_rec(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n)  }
}

unsigned long fib_rec_helper(prev,curr,i,n)
    if (i == n) { return curr; }
    else { return fib_rec_helper(curr,prev+curr,i+1,n); }
    }

Let’s trace the call of fib_rec(5)
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Recursive Functions

unsigned long fib_rec(unsigned long n) {

    unsigned long curr{ 1 }, prev{ 0 }, tmp;

    if (n == 0 or n == 1) { return n; }
    else { return fib_rec_helper(prev, curr, 2, n)  }
}

unsigned long fib_rec_helper(prev,curr,i,n)
    if (i == n) { return curr; }
    else { return fib_rec_helper(curr,prev+curr,i+1,n); }
    }

Let’s trace the call of fib_rec(5)
See the file FibFunctions.cpp
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Recursive Functions: call stack

How are recursive called handled?
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Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
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Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside  

function activation record that contains a copy of all its parameters and 
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved
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Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside  

function activation record that contains a copy of all its parameters and 
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?
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Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside  

function activation record that contains a copy of all its parameters and 
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?
● Yes, it is often called stack overflow
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Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside  

function activation record that contains a copy of all its parameters and 
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?
● Yes, it is often called stack overflow
● If we forget a base case or do not make sure that each recursive call is 

“solving a smaller problem”, we may end up with infinite sequence of 
function calls, which will cause the stack overflow.
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In-class practice

Recall the factorial function: n! = 1  2  3  …  n , n > 0  and 0! = 1 

1. Come up with a recursive definition of the function

2. Implement the recursive definition of the factorial function 
    long int fact_rec(int n)
and test your function.

3. Is the implementation an efficient one? Trace the call of fact_rec(5).
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Palindromes

● [simple definition] A palindrome is a word that is spelled the same 
from both ends
– Examples: anna, madam, racecar, etc.

● [definition] A palindrome is a word, number, phrase, or other 
sequence of symbols that reads the same backwards as forwards, 
ignoring punctuation symbols and lower/upper case
– Examples: race car;  Madam, I’m Adam!
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Palindromes

● [simple definition] A palindrome is a word that is spelled the same 
from both ends
– Examples: anna, madam, racecar, etc.

● [definition] A palindrome is a word, number, phrase, or other 
sequence of symbols that reads the same backwards as forwards, 
ignoring punctuation symbols and lower/upper case
– Examples: race car;  Madam, I’m Adam!

● Let’s see how we can check whether a given word is a palindrome, 
following the simple definition and assuming that only lower case 
alphabetic letters are present.
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Palindromes using string

Idea: start reading the string from the front and the back, compare the 
letters, move into the middle; 
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Palindromes using string

Idea: start reading the string from the front and the back, compare the letters, 
move into the middle; 

bool is_palindrome(const string& s) {

   int first = 0;

   int last = s.length() - 1;

   while ( first < last) {

      if ( s[first] != s[last] ) return false;

      ++ first;

      --last;

   }

   return true;

} 
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Palindromes using array

Idea: start reading the string from the front and the back, compare the letters, 
move into the middle

bool is_palindrome(const char s[], int n) {

   int first = 0;

   int last = n - 1;

   while ( first < last) {

      if ( s[first] != s[last] ) return false;

      ++ first;

      --last;

   }

   return true;

} 
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Palindromes using pointers

Idea: start reading the string from the front and the back, compare the 
letters, move into the middle

bool is_palindrome(const char* first, const char* 
last) {

   while ( first < last) {

      if ( *first != *last ) return false;

      ++ first;

      --last;

   }

   return true;

} 
See the file palindromes.cpp for their use
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Palindromes: recursive version

Let’s come up with a recursive version of the palindromes check!

Idea of iterative version: start reading the string from the front and the back, 
compare the letters, move into the middle;

Idea of recursive version:
● Check the first and the last letters:

– If they are the same, call the function on the string without the first and last 
letters (smaller string, i.e. smaller task)

– If they are different, return false
● When to stop: if we got an empty string, or a string with one letter only

– It means that the word is palindrome, return true
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Resources used for these slides

● slides provided by B. Stroustrup at 
https://www.stroustrup.com/PPP2slides.html

● Class textbook
● C++ How to Program, 10th Edition, by Paul Deitel and Harvey 

Deitel, 2017, Pearson

https://www.stroustrup.com/PPP2slides.html
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