
Recursion with C++

 2

Plan for today

● We will talk about:
– Definition of recursive function
– Call stack with function activation records
– Examples

 3

Recursive Functions

[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a
program or recursively.

 4

Recursive Functions

[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a
program or recursively.

Recursion concepts:
● every recursive function should have base case(s)
● every recursive call/recursion step of a function should be to “solve a smaller

problem”, which should eventually converge to a base case.

 5

Recursive Functions

[Def] Recursive function is a function that calls itself, either directly or indirectly.

The C++ standard document indicates that main should not be called within a
program or recursively.

Recursion concepts:
● every recursive function should have base case(s)
● every recursive call/recursion step of a function should be to “solve a smaller

problem”, which should eventually converge to a base case.

Some notes:
● often the recursive step includes the keyword return
● the recursion step executes while the original call to the function is still “open”

 6

Recursive Functions

Examples of structural recursion:

a bullseye

+

 7

Recursive Functions

Examples of structural recursion:

7-level pyramid

6-level pyramid

bottom level

+

 8

Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …

 9

Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …

[Def, recursive]
F(0)=0 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1

 10

Recursive Functions

Let’s recall Fibonacci numbers: 0 1 1 2 3 5 8 13 …

[Def, recursive]
F(0)=0 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1

unsigned long fibonacci(int n){

 if (n == 0 or n == 1) { return n;}

 else {
 return fibonacci(n-1) + fibonacci(n-2);
 }
}

 11

Recursive Functions

[Def, recursive]
F(0)=0 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1

Let’s come up with an iterative version!

 12

Recursive Functions

[Def, recursive]
F(0)=0 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1

Let’s come up with an iterative version!
● Start with the first two Fibonacci numbers: 0 and 1,
● Grow them, one by one:

– the next one should be 0 + 1 = 2
– the next one should be 1+2 = 3
– the next one should be 2 + 3 = 5, etc

● Stop when n-1 iterations are performed (to get the n th Fibonacci number)

 13

Recursive Functions

[Def, recursive]
F(0)=0 (base case)
F(1)=1 (base case)
F(n)=F(n-1) + F(n-2) for all integers n>1

unsigned long fibonacci_it(int n) {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;
 if (n == 0 or n == 1) { return n; }

 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }
 return curr;
}

 14

Recursive Functions

unsigned long fibonacci(int n){
 if (n == 0 or n == 1) { return n;}
 else { return fibonacci(n-1) + fibonacci(n-2); }
}

unsigned long fibonacci_it(int n) {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;
 if (n == 0 or n == 1) { return n; }

 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }
 return curr;
}

Let’s trace the call of fibonacci(5)
and of fibonacci_it(5).

 15

Recursive Functions

let’s convert iterative version to recursive version!

unsigned long fibonacci_it(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }

 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

 16

Recursive Functions

unsigned long fibonacci_it(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }

 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec

fib_rec_helper(

disassemble

 17

Recursive Functions

 {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(...) }}
 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(

disassemble

 18

Recursive Functions

 {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(...) }}
 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(

disassemble

all the changes - send through parameters of
recursive function call

base case of the recursion

 19

Recursive Functions

 {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(...) }}
 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of
recursive function call

base case of the recursion

 20

Recursive Functions

 {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }}
 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of
recursive function call

base case of the recursion

 21

Recursive Functions

 {
 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }}
 for (int i = 2; i <= n; i++) {
 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

 return curr;
}

fib_rec(unsigned long n)

fib_rec_helper(prev, curr, i, n)

disassemble

all the changes send - through parameters of
recursive function call

base case of the recursion

 22

Recursive Functions

unsigned long fib_rec(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }
}

unsigned long fib_rec_helper(prev,curr,i,n)
 if (i == n) { return curr; }
 else { return fib_rec_helper(curr,prev+curr,i+1,n); }

 tmp = curr;
 curr = curr + prev;
 prev = tmp;
 }

all the changes - send through
parameters of recursive function call

 23

Recursive Functions

unsigned long fib_rec(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }
}

unsigned long fib_rec_helper(prev,curr,i,n)
 if (i == n) { return curr; }
 else { return fib_rec_helper(curr,prev+curr,i+1,n); }
 }

 24

Recursive Functions

unsigned long fib_rec(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }
}

unsigned long fib_rec_helper(prev,curr,i,n)
 if (i == n) { return curr; }
 else { return fib_rec_helper(curr,prev+curr,i+1,n); }
 }

Let’s trace the call of fib_rec(5)

 25

Recursive Functions

unsigned long fib_rec(unsigned long n) {

 unsigned long curr{ 1 }, prev{ 0 }, tmp;

 if (n == 0 or n == 1) { return n; }
 else { return fib_rec_helper(prev, curr, 2, n) }
}

unsigned long fib_rec_helper(prev,curr,i,n)
 if (i == n) { return curr; }
 else { return fib_rec_helper(curr,prev+curr,i+1,n); }
 }

Let’s trace the call of fib_rec(5)
See the file FibFunctions.cpp

 26

Recursive Functions: call stack

How are recursive called handled?

 27

Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records

 28

Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside

function activation record that contains a copy of all its parameters and
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

 29

Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside

function activation record that contains a copy of all its parameters and
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?

 30

Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside

function activation record that contains a copy of all its parameters and
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?
● Yes, it is often called stack overflow

 31

Recursive Functions: call stack

How are recursive calls handled?
● call stack with function activation records
● when a function is called, the language implementation sets aside

function activation record that contains a copy of all its parameters and
local variables

● activation records are stored in a call stack
– last record to be stored is the first one to be retrieved

Can we run out of space is a class stack?
● Yes, it is often called stack overflow
● If we forget a base case or do not make sure that each recursive call is

“solving a smaller problem”, we may end up with infinite sequence of
function calls, which will cause the stack overflow.

 32

In-class practice

Recall the factorial function: n! = 1 2 3 … n , n > 0 and 0! = 1

1. Come up with a recursive definition of the function

2. Implement the recursive definition of the factorial function
 long int fact_rec(int n)
and test your function.

3. Is the implementation an efficient one? Trace the call of fact_rec(5).

 33

Palindromes

● [simple definition] A palindrome is a word that is spelled the same
from both ends
– Examples: anna, madam, racecar, etc.

● [definition] A palindrome is a word, number, phrase, or other
sequence of symbols that reads the same backwards as forwards,
ignoring punctuation symbols and lower/upper case
– Examples: race car; Madam, I’m Adam!

 34

Palindromes

● [simple definition] A palindrome is a word that is spelled the same
from both ends
– Examples: anna, madam, racecar, etc.

● [definition] A palindrome is a word, number, phrase, or other
sequence of symbols that reads the same backwards as forwards,
ignoring punctuation symbols and lower/upper case
– Examples: race car; Madam, I’m Adam!

● Let’s see how we can check whether a given word is a palindrome,
following the simple definition and assuming that only lower case
alphabetic letters are present.

 35

Palindromes using string

Idea: start reading the string from the front and the back, compare the
letters, move into the middle;

 36

Palindromes using string

Idea: start reading the string from the front and the back, compare the letters,
move into the middle;

bool is_palindrome(const string& s) {

 int first = 0;

 int last = s.length() - 1;

 while (first < last) {

 if (s[first] != s[last]) return false;

 ++ first;

 --last;

 }

 return true;

}

 37

Palindromes using array

Idea: start reading the string from the front and the back, compare the letters,
move into the middle

bool is_palindrome(const char s[], int n) {

 int first = 0;

 int last = n - 1;

 while (first < last) {

 if (s[first] != s[last]) return false;

 ++ first;

 --last;

 }

 return true;

}

 38

Palindromes using pointers

Idea: start reading the string from the front and the back, compare the
letters, move into the middle

bool is_palindrome(const char* first, const char*
last) {

 while (first < last) {

 if (*first != *last) return false;

 ++ first;

 --last;

 }

 return true;

}
See the file palindromes.cpp for their use

 39

Palindromes: recursive version

Let’s come up with a recursive version of the palindromes check!

Idea of iterative version: start reading the string from the front and the back,
compare the letters, move into the middle;

Idea of recursive version:
● Check the first and the last letters:

– If they are the same, call the function on the string without the first and last
letters (smaller string, i.e. smaller task)

– If they are different, return false
● When to stop: if we got an empty string, or a string with one letter only

– It means that the word is palindrome, return true

 40

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook
● C++ How to Program, 10th Edition, by Paul Deitel and Harvey

Deitel, 2017, Pearson

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

