

Standard Library Containers
and Iterators

Chapter 15

Today we will discuss

● Containers

● Iterators

● Algorithms

Containers

The Standard Template Library (STL or Standard Library for
short) has a number of templatized data structures which are
called containers.

Containers are data structures capable of storing objects of
almost any data type.

There are three styles of container classes:
 First-class containers
 Container adapters
 Near containers

Each container has associated member functions, with a
subset of these defined in all containers.

Custom Templatized Data Structures

In CSI 33 you will build your own custom templatized data
structures, like:

● Lists
● Linked Lists
● Stacks
● Queues
● Binary Trees
etc.

Iterators

Iterators have properties similar to those of pointers, and are
used to manipulate container elements.

We will discuss them in more details later today.

Algorithms

The Standard Library algorithms are function templates that
perform some common data manipulation.

Examples: searching, sorting, comparing containers, etc.

Each algorithm has minimum requirement for the kinds of
iterators that can be used with it.

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Other containers of the same type:
● deque

● forward_list

● list

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Other containers of the same type:
● deque

Rapid insertions and deletions at front or back.
Direct access to any element.

● forward_list

● list

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Other containers of the same type:
● deque

Rapid insertions and deletions at front or back.
Direct access to any element.

● forward_list
Singly linked list, rapid insertion and deletion anywhere.
Added in C++ 11.

● list

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Other containers of the same type:
● deque

Rapid insertions and deletions at front or back.
Direct access to any element.

● forward_list
Singly linked list, rapid insertion and deletion anywhere.
Added in C++ 11.

● list
Doubly linked list, rapid insertion and deletion anywhere.

Some Container Classes

Here is a list of container classes we worked with so far:
● array
● vector
 - these are sequence containers, they represent linear data.

Other containers of the same type:
● deque

Rapid insertions and deletions at front or back.
Direct access to any element. see dequeUse.cpp

● forward_list
Singly linked list, rapid insertion and deletion anywhere.
Added in C++ 11.

● list
Doubly linked list, rapid insertion and deletion anywhere.

see listUse.cpp

Some Container Classes

Fig. 15.2 has a list of common member functions for most
Standard Library containers.

4 major categories of container types:
 sequence containers
 ordered associative containers
 unordered associative containers
 container adapters

Associative Container Classes

are nonlinear data structures that typically can quickly locate
elements stored in it.

Such containers store key – value pairs/associations, where
each key must be unique and immutable, and it is
associated with a value (sometimes multiple values).

In ordered associative containers the keys are maintained in
sorted order.

Associative Container Classes

In ordered associative containers the keys are maintained in
sorted order.

 set
rapid lookup, no duplicates allowed

 multiset
rapid lookup, duplicates allowed

 map
one-to-one mapping, no duplicates,
rapid key-based lookup

 multimap
one-to-many mapping, duplicates allowed,
rapid key-based lookup

Associative Container Classes

In unordered associative containers the keys are unsorted.

 unordered_set
rapid lookup, no duplicates allowed

 unordered_multiset
rapid lookup, duplicates allowed

 unordered_map
one-to-one mapping, no duplicates,
rapid key-based lookup

 unordered_multimap
one-to-many mapping, duplicates allowed,
rapid key-based lookup

Some Container Classes

4 major categories of container types:
 sequence containers
 ordered associative containers
 unordered associative containers

 container adapters : stacks, queues,
 (both category and style) priority queues

Near containers: exhibit some, but not all, capabilities of the
first-class containers
built-in arrays,
bitsets, for maintaining sets of flag values
valarrays, for performing high-speed math. vector operations

first-class
containers

they are typically constrained versions of sequence
containers

Some Container Classes

4 major categories of container types:
 sequence containers
 ordered associative containers
 unordered associative containers

 container adapters

first-class
containers

Some Container Classes

4 major categories of container types:
 sequence containers
 ordered associative containers
 unordered associative containers

 container adapters : stacks, queues,
 (both category and style) priority queues

first-class
containers

they are typically constrained versions of sequence
containers

Some Container Classes

4 major categories of container types:
 sequence containers
 ordered associative containers
 unordered associative containers

 container adapters : stacks, queues,
 (both category and style) priority queues

Near containers: exhibit some, but not all, capabilities of the
first-class containers
built-in arrays,
bitsets, for maintaining sets of flag values
valarrays, for performing high-speed math. vector operations

first-class
containers

they are typically constrained versions of sequence
containers

First-Class Container Common Nested Types

Fig. 15.3 in the book shows a list of common first-class
container types that are defined inside each container class
definition and are used in declarations of variables,
parameters to functions, and return values from functions.

First-Class Container Common Nested Types

Fig. 15.3 in the book shows a list of common first-class
container types that are defined inside each container class
definition and are used in declarations of variables,
parameters to functions, and return values from functions.

Here are some of them:
allocator_type the type of the object used to allocate
the container’s memory (not used in array class template)

value_type the type of the element stored in the container

reference a reference for the container’s element type

const reference a reference for the container’s element
type that can be used only to perform const operations

pointer a pointer to the container class element type
Look up the rest in the textbook.

Requirements for Container Elements

Before using a Standard Library container, it is important to
ensure that the type of objects being stored in the container
supports the minimum set of functionality.

For example,
The object type should provide a copy constructor and copy
assignment operator, because when an object is inserted into
a container, a copy of the object is made.

Objects must be comparable for ordered associative
containers.

Iterators

Iterators have properties similar to those of pointers, and are
used to point to first-class container elements.

They hold the state information sensitive to the particular
containers on which they operate. Hence, iterators are
implemented for each type of the container.

Some iterator operations are uniform across containers.
For example, increment, decrement, dereferencing, etc.

First-class containers provide member functions
begin() returns an iterator pointing to the first element
end() returns an iterator pointing to the end of the
container (past the last element, to non-existing element)

see dequeWithIterators.cpp and listWithIterators.cpp

Using istream_iterator and ostream_iterator

We can use the istream_iterator and
ostream_iterator iterators for input and display.

see inputOutputWithIterators.cpp

Later on, when reading Section 15.5.1 you will see their
powerful application in the vector example (Fig 5.11)

Associative Containers

Let’s take a look at the map container.

It is an ordered associative container, i.e. keys are maintained
in sorted order.

It performs fast storage and retrieval of of unique key and
associated values.

It is called one-to-one mapping.

Example: StudentID StudentRecord

see mapUse.cpp

HW assignment

1) given in the previous class
2) Write the program that will read the ages of the people from
a given file (file name should be requested from the user),
store them (choose between three data types: vector,
deque, map), and then output the count of each age that was
read from the file to display.
For example, given the file data.txt:
23 67 1 4 7
67 4 1
7 4 23 1

The output will be:
Age Count
23 1
67 2
1 3
 ...

Self-Study:
Section 15.5.1,

Suggested Practice:
Chapter 15, Self-Review Exercises
and other exercises: 15.1 (all,
except i, l, o), 15.2 (all except c, g,
n, s), 15.6, 15.8, 15.9, 15.13

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

