
Classes: inheritance,
polymorphism and encapsulation

 2

Plan for today

● We will talk about:
– Inheritance
– Polymorphism
– Hierarchies
– Data hiding (encapsulation)
– Has-a vs is-a relationship

 3

Data hiding or encapsulation
● Data should be private:

– So it will not be changed inadvertently
– Use private data, and pairs of public access functions to get and set the

data, if needed

● Our functions can be private or public
– public for interface
– private for functions used only internally to a class

 4

What does “private” buy us?
● We can change our implementation after release
● We don’t expose any libraries we used in representation to our users

– We could replace them with other libraries without affecting user code

● Functional interfaces can be nicer to read and use
– Example: s.add(x) rather than s.points.push_back(x)

● We can enforce immutability of objects
– Or allow only some types of changes (only color and style change; not the

shape)
– const member functions

● The value of this “encapsulation” varies with application domains
– Is often most valuable
– Is the ideal, hide representation unless you have a good reason not to

 5

Access

● C++ provides a simple model of access to members of a class. A
member of a class can be:
– private: its name can be used only by members of the class in

which it is declared
– protected: its name can be used only by members of the

class in which it is declared and members of classes derived
from that

– public: its name can be used by all functions

These definitions ignore the concept of “friend” that I introduced to us,
as well as a few minor details.

 6

Inheritance

● Derivation is a way to build one class from another so that the new
class can be used in place of the original.

● The derived class inherits all of the members of its base class
● Other names of the derived class:

– subclass (and base class is called “superclass”)
– child class (and the base class is called parent class or

ancestor) – less formal

 7

Inheritance

● Derivation is a way to build one class from another so that the new
class can be used in place of the original.

● The derived class inherits all of the members of its base class
● Other names of the derived class:

– subclass (and base class is called “superclass”)
– child class (and the base class is called parent class or

ancestor) – less formal
● Why use inheritance?

– It reduces the duplication of existing code, and
– It can save time during program development by taking

advantage of proven, high-quality, already defined classes

 8

Inheritance

● The derived class may
– introduce one or more behaviors beyond those that are inherited

(augmenting the base class)
– specialize one or more of the inherited behaviors from the base

class (provide an alternative definition for the inherited method,
i.e. override the original definition)

 9

Inheritance

● The derived class may
– introduce one or more behaviors beyond those that are inherited

(augmenting the base class)
– specialize one or more of the inherited behaviors from the base

class (provide an alternative definition for the inherited method,
i.e. override the original definition)

● A single class can serve as base class for many derived classes
● A single derived class can inherit from multiple base classes

(multiple inheritance)

 10

Object-oriented programming

● The use of inheritance, run-time polymorphism, and
encapsulation is the most common definition of object-oriented
programming.

● C++ directly supports object-oriented programming
– In addition to other programming styles

● C++ supports generic programming
– when classes or functions can be parameterized over a type
– recall template classes and template functions

 11

When inheriting

● C++ has private, protected, and public inheritance

 12

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

 13

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected
members can be used only by members of D

 14

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected
members can be used only by members of D

– If a base of class D is protected, its public and protected
member names can be used only by members of D and
members of classes derived from D

 15

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected
members can be used only by members of D

– If a base of class D is protected, its public and protected
member names can be used only by members of D and
members of classes derived from D

– If a base is public, its public member names become public
members of D, the protected members of the base class
become protected members of D. A base class's private
members are never accessible directly from a derived class D.

 16

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected
members can be used only by members of D

– If a base of class D is protected, its public and protected
member names can be used only by members of D and
members of classes derived from D

– If a base is public, its public member names become public
members of D, the protected members of the base class
become protected members of D. A base class's private
members are never accessible directly from a derived class D.

When access specifier is not used, it is private by default

 17

Class Hierarchy
● Inheritance relationships form class hierarchies
● We can look at colleges and universities and build a student

inheritance hierarchy:

Student

Undergraduate Student Graduate Student

Freshman Doctoral Student Masters StudentSenior

Sophomore Junior

 18

is-a vs has-a relationships

● The relationship between a base class and derived class is often
termed as is-a relationship, meaning that the object of the
derived class also can be treated as an object of its base class.

 19

is-a vs has-a relationships

● The relationship between a base class and derived class is often
termed as is-a relationship, meaning that the object of the
derived class also can be treated as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an Undergraduate Student (base)

 20

is-a vs has-a relationships

● The relationship between a base class and derived class is often
termed as is-a relationship, meaning that the object of the
derived class also can be treated as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an Undergraduate Student (base)

● When a class is implemented using an instance variable of
another, it is termed as has-a relationship.

 21

is-a vs has-a relationships

● The relationship between a base class and derived class is often
termed as is-a relationship, meaning that the object of the
derived class also can be treated as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an undergraduate student (base)

● When a class is implemented using an instance variable of
another, it is termed as has-a relationship.
– class MixedNumber can have objects of types int and
Rational as its attributes

– class Rational can have objects of type int as numerator
and denominator

 22

is-a vs has-a relationships

● there is not always a clear-cut rule for when to use inheritance
and when to use has-a relationship.

● the decision comes down to the number of potentially
inherited behaviors that are undesirable versus the number of
desirable ones that would need to be explicitly regenerated if
using a has-a relationship.

 23

Example: a bank account

● Let’s think about a design of a very basic bank account class:

 24

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

 25

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

 26

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h

 27

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h

class Account
{

Date dueDate;
PersonInfo p;
double balance;

public:
Account(...);
double getBalance();
void deposit(double a);
bool withdraw(double a);

};

 28

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h

class Account
{

Date dueDate;
PersonInfo p;
double balance;

public:
Account(...);
double getBalance();
void deposit(double a);
bool withdraw(double a);

};
Account class is using an instance
variables of PersonInfo struct, and
class Date – has-a relationship

 29

Polymorphism

● Let’s think about quadrilaterals: polygons having four sides,
four angles, and four vertices.

● Quadrilaterals can be classified into parallelograms, squares,
rectangles, and rhombuses, trapezoids, and kites.

 30

Polymorphism

● We can think of the following inheritance hierarchy:

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle

 31

Polymorphism

● We can think of the following inheritance hierarchy:

● All of them can be drawn by four points, but

 not all need all four points to be “created”
● The formulas for perimeter and area differ

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle

 32

Polymorphism

● If we decide to leave the calculation of area and/or perimeter
to derived from Quadrilateral classes, then we can use

● Virtual functions that give us the ability to define a function in a
base class and have a function of the same name and type in
a derived class called when a user calls the base class
function,

● This is often called run-time polymorphism, dynamic dispatch,
or run-time dispatch because the function called is determined
at run time based on the type of the object used.

 33

Polymorphism

class Quadrilateral

{

public:

Quadrilateral(const Point& a, const Point& b,

 const Point& c, const Point& d);

 // .. skipped

virtual double Perimeter() const; //perimeter

virtual double Area() const; // area

//…

};

 34

More about graphics

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle

shape

Shape us designed to be the base class only.

A class is abstract if it can be used only as a
base class.

 35

More about graphics
class Shape {
public:

void draw() const; // deal with color and draw lines
virtual void move(int dx, int dy); // move the shape +=dx, +=dy

// something for line and fill colors

virtual ~Shape() {} // left for derived classes
protected:

Shape() {};
Shape(std::initializer_list<Point> lst);

void add(Point p); // add p to points
void setPoint(int i, Point p); // points[i] = p

private:
std::vector<Point> points; // not used by all shapes };

 36

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook
● Problem Solving with C++, 7th edition, by Walter Savitch,

Pearson
● C++ How to Program, 10th Edition, by Paul Deitel and Harvey

Deitel, 2017, Pearson

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

