
Classes: inheritance, 
polymorphism and encapsulation
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Plan for today

● We will talk about:
– Inheritance
– Polymorphism
– Hierarchies
– Data hiding (encapsulation)
– Has-a vs is-a relationship
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Data hiding or encapsulation
● Data should be private:

– So it will not be changed inadvertently
– Use private data, and pairs of public access functions to get and set the 

data, if needed

● Our functions can be private or public
– public for interface
– private for functions used only internally to a class
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What does “private” buy us?
● We can change our implementation after release
● We don’t expose any libraries we used in representation to our users

– We could replace them with other libraries without affecting user code

● Functional interfaces can be nicer to read and use
– Example: s.add(x) rather than s.points.push_back(x)

● We can enforce immutability of objects
– Or allow only some types of changes (only color and style change; not the 

shape)
– const member functions

● The value of this “encapsulation” varies with application domains
– Is often most valuable
– Is the ideal, hide representation unless you have a good reason not to
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Access

● C++ provides a simple model of access to members of a class. A 
member of a class can be:
– private: its name can be used only by members of the class in 

which it is declared
– protected: its name can be used only by members of the 

class in which it is declared and members of classes derived 
from that

– public: its name can be used by all functions

These definitions ignore the concept of “friend” that I introduced to us, 
as well as a few minor details.
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Inheritance

● Derivation is a way to build one class from another so that the new 
class can be used in place of the original.

● The derived class inherits all of the members of its base class 
● Other names of the derived class: 

– subclass (and base class is called  “superclass”)
– child class (and the base class is called parent class or 

ancestor) – less formal
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Inheritance

● Derivation is a way to build one class from another so that the new 
class can be used in place of the original.

● The derived class inherits all of the members of its base class 
● Other names of the derived class: 

– subclass (and base class is called  “superclass”)
– child class (and the base class is called parent class or 

ancestor) – less formal
● Why use inheritance?

– It reduces the duplication of existing code, and
– It can save time during program development by taking 

advantage of proven, high-quality, already defined classes
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Inheritance

● The derived class may
– introduce one or more behaviors beyond those that are inherited 

(augmenting the base class)
– specialize one or more of the inherited behaviors from the base 

class (provide an alternative definition for the inherited method, 
i.e. override the original definition)
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Inheritance

● The derived class may
– introduce one or more behaviors beyond those that are inherited 

(augmenting the base class)
– specialize one or more of the inherited behaviors from the base 

class (provide an alternative definition for the inherited method, 
i.e. override the original definition)

● A single class can serve as base class for many derived classes
● A single derived class can inherit from multiple base classes 

(multiple inheritance)  
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Object-oriented programming

● The use of inheritance, run-time polymorphism, and 
encapsulation is the most common definition of object-oriented 
programming.

● C++ directly supports object-oriented programming
– In addition to other programming styles

● C++ supports generic programming 
– when classes or functions can be parameterized over a type
– recall template classes and template functions
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When inheriting

● C++ has private, protected, and public inheritance
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● C++ has private, protected, and public inheritance

class D: access-specifier base-class
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– If a base of class D is private, its public and protected 
members can be used only by members of D
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● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected 
members can be used only by members of D

– If a base of class D is protected, its public and protected 
member names can be used only by members of D and 
members of classes derived from D
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When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected 
members can be used only by members of D

– If a base of class D is protected, its public and protected 
member names can be used only by members of D and 
members of classes derived from D

– If a base is public, its public member names become public 
members of D, the protected members of the base class 
become protected members of D. A base class's private 
members are never accessible directly from a derived class D.



  16

When inheriting

● C++ has private, protected, and public inheritance

class D: access-specifier base-class

– If a base of class D is private, its public and protected 
members can be used only by members of D

– If a base of class D is protected, its public and protected 
member names can be used only by members of D and 
members of classes derived from D

– If a base is public, its public member names become public 
members of D, the protected members of the base class 
become protected members of D. A base class's private 
members are never accessible directly from a derived class D.

When access specifier is not used, it is private by default
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Class Hierarchy
● Inheritance relationships form class hierarchies
● We can look at colleges and universities and build a student 

inheritance hierarchy:

Student

Undergraduate Student Graduate Student

Freshman Doctoral Student Masters StudentSenior

Sophomore Junior
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is-a vs has-a relationships

● The relationship between a base class and derived class is often 
termed as is-a relationship, meaning that the object of the 
derived class also can be treated  as an object of its base class.



  19

is-a vs has-a relationships

● The relationship between a base class and derived class is often 
termed as is-a relationship, meaning that the object of the 
derived class also can be treated  as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an Undergraduate Student (base)
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is-a vs has-a relationships

● The relationship between a base class and derived class is often 
termed as is-a relationship, meaning that the object of the 
derived class also can be treated  as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an Undergraduate Student (base)

● When a class is implemented using an instance variable of 
another, it is termed as has-a relationship.
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is-a vs has-a relationships

● The relationship between a base class and derived class is often 
termed as is-a relationship, meaning that the object of the 
derived class also can be treated  as an object of its base class.
– square (derived) is a quadrilateral (base)
– Junior (derived) is an undergraduate student (base)

● When a class is implemented using an instance variable of 
another, it is termed as has-a relationship.
– class MixedNumber can have objects of types int and 
Rational as its attributes

– class Rational can have objects of type int as numerator 
and denominator
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is-a vs has-a relationships

● there is not always a clear-cut rule for when to use inheritance 
and when to use has-a relationship.

● the decision comes down to the number of potentially 
inherited behaviors that are undesirable versus the number of 
desirable ones that would need to be explicitly regenerated if 
using a has-a relationship.
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Example: a bank account

● Let’s think about a design of a very basic bank account class:
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Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date
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Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};
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Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h
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Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h

class Account
{

Date dueDate;
PersonInfo p;
double balance;

public:
Account(...);
double getBalance();
void deposit(double a);
bool withdraw(double a);

};



  28

Example: a bank account

● Let’s think about a design of a very basic bank account class:
– there should be a person’s record on file
– A balance
– A due date

struct PersonInfo
{

string fullName;
Date birthday;

};

Date.h

class Account
{

Date dueDate;
PersonInfo p;
double balance;

public:
Account(...);
double getBalance();
void deposit(double a);
bool withdraw(double a);

};
Account class is using an instance 
variables of PersonInfo struct, and 
class Date – has-a relationship
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Polymorphism

● Let’s think about quadrilaterals: polygons having four sides, 
four angles, and four vertices.

● Quadrilaterals can be classified into parallelograms, squares, 
rectangles, and rhombuses, trapezoids, and kites.



  30

Polymorphism

● We can think of the following inheritance hierarchy:

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle
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Polymorphism

● We can think of the following inheritance hierarchy:

● All of them can be drawn by four points, but

     not all need all four points to be “created”
● The formulas for perimeter and area differ

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle
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Polymorphism

● If we decide to leave the calculation of area and/or perimeter 
to derived from Quadrilateral classes, then we can use

● Virtual functions that give us the ability to define a function in a 
base class and have a function of the same name and type in 
a derived class called when a user calls the base class 
function,

● This is often called run-time polymorphism, dynamic dispatch, 
or run-time dispatch because the function called is determined 
at run time based on the type of the object used.
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Polymorphism

class Quadrilateral

{

public:

Quadrilateral(const Point& a, const Point& b, 

                const Point& c, const Point& d);

     // .. skipped

virtual double Perimeter() const; //perimeter

virtual double Area() const; // area 

//…

};
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More about graphics

quadrilateral

trapezoid

parallelogram

kite

rectangle

rhombus

square

rectangle

shape

Shape us designed to be the base class only.

A class is abstract if it can be used only as a 
base class.
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More about graphics
class Shape {
public:

void draw() const; // deal with color and draw lines
virtual void move(int dx, int dy); // move the shape +=dx, +=dy

// something for line and fill colors

virtual ~Shape() {} // left for derived classes
protected:

Shape() {}; 
Shape(std::initializer_list<Point> lst);

void add(Point p); // add p to points
void setPoint(int i, Point p); // points[i] = p

private:
std::vector<Point> points; // not used by all shapes  };
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Resources used for these slides

● slides provided by B. Stroustrup at 
https://www.stroustrup.com/PPP2slides.html

● Class textbook
● Problem Solving with C++, 7th edition, by Walter Savitch, 

Pearson
● C++ How to Program, 10th Edition, by Paul Deitel and Harvey 

Deitel, 2017, Pearson

https://www.stroustrup.com/PPP2slides.html
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