

File Processing (Part 2)

Chapter 14

Some bits and pieces from Chapter 13

if (!cin) {
 // process invalid input stream
}

Some bits and pieces from Chapter 13

if (!cin) {
 // process invalid input stream
}

operator! member function,
inherited into the stream classes
from basic_ios, returns true if
the badbit or failbit are false

Some bits and pieces from Chapter 13

if (!cin) {
 // process invalid input stream
}

while (cin >> a){
 // process valid input
}

operator! member function,
inherited into the stream classes
from basic_ios, returns true if
the badbit or failbit are false

Some bits and pieces from Chapter 13

if (!cin) {
 // process invalid input stream
}

while (cin >> a){
 // process valid input
}

operator! member function,
inherited into the stream classes
from basic_ios, returns true if
the badbit or failbit are false

operator bool member
function, added in C++ 11, returns
false if the badbit or failbit
are true

Random Access Files

So far we created and read sequential files. Searched them
for information, stored information in them.

Sequential files are not good for instant-access applications,
in which a particular record must be located immediately.

Random Access Files

So far we created and read sequential files. Searched them
for information, stored information in them.

Sequential files are not good for instant-access applications,
in which a particular record must be located immediately.

Examples of instant – access applications:
● airline reservation systems
● banking systems
● point-of-sale systems
● automated teller machines
● other kinds of transaction-processing systems
- all of them require rapid access to specific data

Random Access Files

So far we created and read sequential files. Searched them
for information, stored information in them.

Sequential files are not good for instant-access applications,
in which a particular record must be located immediately.

Examples of instant – access applications:
● airline reservation systems
● banking systems
● point-of-sale systems
● automated teller machines
● other kinds of transaction-processing systems
- all of them require rapid access to specific data

Random-access files provide such an access: the individual
records ca be accessed directly and quickly.

Random Access Files

C++ does not impose structure on a file.

The application that wants to use random-access files must
create them.

Random Access Files

C++ does not impose structure on a file.

The application that wants to use random-access files must
create them.

A variety of techniques can be used.

Random Access Files

C++ does not impose structure on a file.

The application that wants to use random-access files must
create them.

A variety of techniques can be used.

An easy one: require all records to be of the same fixed length.

100
bytes

0

100
bytes

100

100
bytes

200

100
bytes

300

100
bytes

400

100
bytes

500

100
bytes

600

100
bytes

700

Random Access Files

C++ does not impose structure on a file.

The application that wants to use random-access files must
create them.

A variety of techniques can be used.

An easy one: require all records to be of the same fixed length.

Data can be inserted into a file without disturbing other data in the
file. Data stored can be updated/deleted without rewriting the entire
file.

100
bytes

0

100
bytes

100

100
bytes

200

100
bytes

300

100
bytes

400

100
bytes

500

100
bytes

600

100
bytes

700

We will use:

write (member function of ostream) that provides
unformatted output; it inserts the first n characters of the
array pointed to by s into the stream.

ostream& write(const char* s, streamsize n);

This function simply copies a block of data, without checking
its contents: the array may contain null characters, which are
also copied without stopping the copying process.

We will use:

read (member function of istream) that provides unformatted input; it
reads n input bytes into a built-in array of chars;

istream& read (char* s, streamsize n);

This function simply copies a block of data, without checking its
contents nor appending a null character at the end. If the input
sequence runs out of characters to extract (i.e., the end-of-file is
reached) before n characters have been successfully read, the array
pointed to by s contains all the characters read until that point, and both
the eofbit and failbit flags are set for the stream.

We will use:

read (member function of istream) that provides unformatted input; it
reads n input bytes into a built-in array of chars;

istream& read (char* s, streamsize n);

This function simply copies a block of data, without checking its
contents nor appending a null character at the end. If the input
sequence runs out of characters to extract (i.e., the end-of-file is
reached) before n characters have been successfully read, the array
pointed to by s contains all the characters read until that point, and both
the eofbit and failbit flags are set for the stream.

Let’s see an example that outputs three integer values into a file, and
then retrieves the second number from it:

see writingAndReadingFilesForRandomAccess.cpp

File Position Pointers will be used as well:

istream and ostream provide member functions:

seekg : seek get; sets the position of the next character to
be extracted from the input stream.

istream& seekg(streampos pos);

seekp : seek put; sets the position where the next character
is to be inserted into the output stream

ostream& seekp(streampos pos);

Both functions reposition the file-position pointer.

Each istream object has a get pointer, the byte number in
the file from which the next input to occur.
Each ostream object has a put pointer, the byte number in
the file at which the next output should be placed.

Bank Accounts

We discussed bank accounts at the previous meeting.

Consider the following idea:

● create instances of class Account (needs to be defined)

● these objects can be made of fixed size (implementation
decision)

● store them in a file

● retrieve them from a file using random-access

Bank Accounts

We discussed bank accounts at the previous meeting.

Consider the following idea:

● create instances of class Account (needs to be defined)

● these objects can be made of fixed size (implementation
decision)

● store them in a file

● retrieve them from a file using random-access

see Account.h, Account.cpp, StoringClientData.cpp

Object Serialization

When we output an object into a file, its data attributes are
output, not the member functions.

We “lose” object’s type information as well.

So if a program reads information from a file, it needs to
know what type objects are “stored” there.

Our random-access files are not portable, because the size
of the Account object is platform dependent.

Object Serialization

Object serialization allows us to represent objects in a
platform-independent manner as a sequence of bytes that
include the object’s data as well as information about the
object’s type and the types of data stored in the object.

After such a serialized object is written to a file, it can be
read from the file and deserialized, i.e. the type information
and bytes that represent the object and its data can be used
to recreate the object in memory.

C++ (up to C++ 14) doesn’t provide a built-in serialization
mechanism.

There are third-party and open-source C++ libraries that
support object serialization.

HW assignment

1) Exercise 14.11
(feel free to reduce the number of records to 10)
2) to be posted after the next lecture

Self-Study:
Chapter 14, Self-Review Exercises

Optional (for self-development):
Sections 13.6.4

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

