
  

File Processing (Part 2)

Chapter 14
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Some bits and pieces from Chapter 13

if (!cin) {
   // process invalid input stream
}

while (cin >> a){
 // process valid input
}

operator! member function, 
inherited into the stream classes 
from basic_ios, returns true if 
the badbit or failbit are false

operator bool member 
function, added in C++ 11, returns 
false if the badbit or failbit 
are true
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Random Access Files

So far we created and read sequential files. Searched them 
for information, stored information in them.

Sequential files are not good for instant-access applications, 
in which a particular record must be located immediately.

Examples of instant – access applications:
● airline reservation systems
● banking systems
● point-of-sale systems
● automated teller machines
● other kinds of transaction-processing systems
- all of them require rapid access to specific data

Random-access files provide such an access: the individual 
records ca be accessed directly and quickly.
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Random Access Files

C++ does not impose structure on a file.

The application that wants to use random-access files must 
create them.

A variety of techniques can be used.

An easy one: require all records to be of the same fixed length.

Data can be inserted into a file without disturbing other data in the 
file. Data stored can be updated/deleted without rewriting the entire 
file.
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We will use:

write (member function of ostream) that provides 
unformatted output; it inserts the first n characters of the 
array pointed to by s into the stream.

ostream& write(const char* s, streamsize n);

This function simply copies a block of data, without checking 
its contents: the array may contain null characters, which are 
also copied without stopping the copying process.
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contents nor appending a null character at the end. If the input 
sequence runs out of characters to extract (i.e., the end-of-file is 
reached) before n characters have been successfully read, the array 
pointed to by s contains all the characters read until that point, and both 
the eofbit and failbit flags are set for the stream.



  

We will use:

read (member function of istream) that provides unformatted input; it 
reads n input bytes into a built-in array of chars; 

istream& read (char* s, streamsize n);

This function simply copies a block of data, without checking its 
contents nor appending a null character at the end. If the input 
sequence runs out of characters to extract (i.e., the end-of-file is 
reached) before n characters have been successfully read, the array 
pointed to by s contains all the characters read until that point, and both 
the eofbit and failbit flags are set for the stream.

Let’s see an example that outputs three integer values into a file, and 
then retrieves the second number from it:

see writingAndReadingFilesForRandomAccess.cpp



  

File Position Pointers will be used as well:

istream and ostream provide member functions:

seekg : seek get; sets the position of the next character to 
be extracted from the input stream.

istream& seekg(streampos pos);

seekp : seek put; sets the position where the next character 
is to be inserted into the output stream

ostream& seekp(streampos pos);  

Both functions reposition the file-position pointer.

Each istream object has a get pointer, the byte number in 
the file from which the next input to occur.
Each ostream object has a put pointer, the byte number in 
the file at which the next output should be placed.



  

Bank Accounts

We discussed bank accounts at the previous meeting.

Consider the following idea:

● create instances of class Account (needs to be defined)

● these objects can be made of fixed size (implementation 
decision)

● store them in a file 

● retrieve them from a file using random-access 



  

Bank Accounts

We discussed bank accounts at the previous meeting.

Consider the following idea:

● create instances of class Account (needs to be defined)

● these objects can be made of fixed size (implementation 
decision)

● store them in a file 

● retrieve them from a file using random-access 

see Account.h, Account.cpp, StoringClientData.cpp



  

Object Serialization

When we output an object into a file, its data attributes are 
output, not the member functions.

We “lose” object’s type information as well.

So if a program reads information from a file, it needs to 
know what type objects are “stored” there.

Our random-access files are not portable, because the size 
of the Account object is platform dependent.



  

Object Serialization

Object serialization allows us to represent objects in a 
platform-independent manner as a sequence of bytes that 
include the object’s data as well as information about the 
object’s type and the types of data stored in the object.

After such a serialized object is written to a file, it can be 
read from the file and deserialized, i.e. the type information 
and bytes that represent the object and its data can be used 
to recreate the object in memory.

C++ (up to C++ 14) doesn’t provide a built-in serialization 
mechanism.

There are third-party and open-source C++ libraries that 
support object serialization.



  

HW assignment

1) Exercise 14.11
(feel free to reduce the number of records to 10)
2) to be posted after the next lecture

Self-Study:
Chapter 14, Self-Review Exercises

Optional (for self-development):
Sections 13.6.4



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.
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