
Chapter 19: Vector, Templates, and Exceptions

 2

Plan for today

● We will talk about:
– range checking and exceptions
– resources and exceptions

 3

Range checking: operator[]

● We defined the operator[] as

 double& operator[](int n) // for non-const

 { return elem[n]; }

double operator[](int n) const // for const

 { return elem[n]; }

 4

Range checking: operator[]

● We defined the operator[] as

 double& operator[](int n) // for non-const

 { return elem[n]; }

double operator[](int n) const // for const

 { return elem[n]; }

● Did we check that index n is within the vector range?

 5

Range checking: operator[]

● We defined the operator[] as

 double& operator[](int n) // for non-const

 { return elem[n]; }

double operator[](int n) const // for const

 { return elem[n]; }

● Did we check that index n is within the vector range? NO!!!

 6

Range checking: at()

● Operator at() will have the range check!

struct out_of_range

{

 // … class used to report range access errors

}

 7

Range checking: at()
● Operator at() will have the range check!

struct out_of_range

{

 // … class used to report range access errors

}

template <typename T>

T& vector<t>::at(int n) // for non-const vector

{

 if(n < 0 || n >= sz)

 throw out_of_range();

 return elem[n];

}

 8

Range checking: at()
● Operator at() will have the range check!

struct out_of_range

{

 // … class used to report range access errors

}

template <typename T>

T& vector<t>::at(int n) // for non-const vector

{

 if(n < 0 || n >= sz)

 throw out_of_range();

 return elem[n];

}

Write the code for the
const vector

 9

Exception handling

● We use exceptions to report errors
● We must ensure that use of exceptions

– Doesn’t introduce new sources of errors
– Doesn’t complicate our code
– Doesn’t lead to resource leaks

 10

Resource management

● A resource is something that has to be acquired and must be
released (explicitly and implicitly) or reclaimed by some “resource
manager”

 11

Resource management

● A resource is something that has to be acquired and must be
released (explicitly and implicitly) or reclaimed by some “resource
manager”

● Examples of resources:
– Memory
– Locks
– File handles
– Thread handles
– Sockets
– Windows

 12

Resource management

● A resource is something that has to be acquired and must be
released (explicitly and implicitly) or reclaimed by some “resource
manager”

● Examples of resources:
– Memory
– Locks
– File handles
– Thread handles
– Sockets
– Windows

void suspicious(int s, int x)
{

int* p = new int[s];
// …
delete[] p;

}

 13

Resource management

● A resource is something that has to be acquired and must be
released (explicitly and implicitly) or reclaimed by some “resource
manager”

● Examples of resources:
– Memory
– Locks
– File handles
– Thread handles
– Sockets
– Windows

When we allocate memory dinamically, we
have make sure it is released, but it is not
always easy to do.

void suspicious(int s, int x)
{

int* p = new int[s];
// … p = q...
delete[] p;

}

 14

Resource management

● A resource is something that has to be acquired and must be
released (explicitly and implicitly) or reclaimed by some “resource
manager”

● Examples of resources:
– Memory
– Locks
– File handles
– Thread handles
– Sockets
– Windows

When we allocate memory dinamically, we
have make sure it is released, but it is not
always easy to do.

void suspicious(int s, int x)
{

int* p = new int[s];
// …
delete[] p;

}
When we add exceptions, resource leaks can
become common.

 15

Resource management
● Note: if new fails to find free-store memory to allocate, it will throw the

standard library exception bad_alloc.
● The try … catch technique woks for this example, but we’ll need

several try-blocks.

 16

Resource management: RAII
● Note: if new fails to find free-store memory to allocate, it will throw the

standard library exception bad_alloc.
● The try … catch technique woks for this example, but we’ll need

several try-blocks.
● Check out this example:

void f(vector<int>& v, int s)
{
 vector<int> p(s);
 vector<int> q(s);
 //...
}

● This is better! The resource is acquired by constructor and released
by matching destructor – Resource Acquisition is Initialization (RAII)

 17

Resource management: unique_ptr
● In <memory> the standard library provides unique_ptr
● unique_ptr is an object, that holds a pointer, and we can think of it

as some kind of pointer (we can use → and * on it)
● unique_ptr owns the object pointed to, hence when it is destroyed,

it deletes the object it points to.

 18

Resource management: unique_ptr
● In <memory> the standard library provides unique_ptr
● unique_ptr is an object, that holds a pointer, and we can think of it

as some kind of pointer (we can use → and * on it)
● unique_ptr owns the object pointed to, hence when it is destroyed,

it deletes the object it points to.
– If an exception is thrown while a vector is being filled
– If we return prematurely from a function that “builds” a vector
– The vector will be properly destroyed

 19

Resource management: unique_ptr
● In <memory> the standard library provides unique_ptr
● unique_ptr is an object, that holds a pointer, and we can think of it

as some kind of pointer (we can use → and * on it)
● unique_ptr owns the object pointed to, hence when it is destroyed,

it deletes the object it points to.
– If an exception is thrown while a vector is being filled
– If we return prematurely from a function that “builds” a vector
– The vector will be properly destroyed

● The release() method of unique_ptr object extracts the
contained pointer (so we can return it, for example) and makes the
object hold the nullptr.

 20

Resource management: unique_ptr
● Example (traditional, error-prone approach):

vector<int>* make_vec() // make a filled vector
{

 // allocate on free store
 vector<int>> p {new vector<int>};

 // … fill the vector with data; this may throw an exception …
 return p;

}

// users have to remember to delete

// they occasionally forget: leak!

 21

Resource management: unique_ptr
● Example (improved approach):

unique_ptr<vector<int>> make_vec() // make a filled vector
{

 // allocate on free store
 unique_ptr<vector<int>> p {new vector<int>};

 // … fill the vector with data; this may throw an exception …
 return p;

}

// users don’t have to delete; no delete in user code

// a unique_ptr owns its object and deletes it automatically

 22

Resource management: make_unique
● Example (even better solution):

unique_ptr<vector<int>> make_vec() // make a filled vector
{

 // allocate on free store
 auto p = make_unique<vector<int>>();

 // … fill the vector with data; this may throw an exception …
 return p;

}

// no new in user code

// make_unique is available starting from C++ 14

 23

A last glance at our vector class
● Things we didn’t do:

– resize() method doesn’t check if new size is larger than the previous one
● We hope that since it is a private method, it will only be used by methods of vector

class, which we define

– no insertion operation
– no deletion at position operation
– cannot use range for loop
– ...many more issues

 24

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

