

File Processing (Part 1)

Chapter 14

Introduction

C++ views each file as a sequence of bytes.

Each file ends with an end-of-file marker or at a specific byte
number recorded in an operating-system-maintained
administrative data structure.

When a file is opened, an object associated with the file is
created, and a stream is associated with the object.

When we finished working with a file, we must close it.

File processing Class Templates

To perform file processing in C++, include the headers
<iostream> and <fstream>

<fstream> header includes the definitions for the stream
class templates:
basic_ifstream : a subclass of basic_istream for file
input
basic_ofstream: a subclass of basic_ostream for file
output
basic_fstream: a subclass of basic_iostream for file
input and output

<iostream> header

Each has a predefined specialization for char I/O, and
<fstream> provides aliases for these template
specializations:
ifstream, alias for basic_ifstream<char>
ofstream, alias for basic_ofstream<char>
fstream is an alias for basic_fstream<char>

All the I/O capabilities described in Chapter 13 also can be
applied to file streams.

Opening a File for Writing

Let’s create two files: file1.txt and file2.txt and fill them out
with some information.

● file1.txt will be used for the account balance
● file2.txt will be used for the record of transactions

file1.txt format:
<account number> <name of account holder> <balance>

file2.txt format:
<account number> <transaction amount>

if balance is negative, it means that the person owes to bank
if transaction amount is negative, it means that amount
 should be subtracted from the account's balance

see seqFileCreation.cpp

Reading Data From a Sequential File

Let’s read the information from file1.txt:

see readSeqFile.cpp

File Position Pointers

Often programs read sequentially from the beginning of a
file.

What if we need to find some specific data?

What if we will need to process the same file several times?

File Position Pointers

istream and ostream provide member functions:

seekg : seek get; sets the position of the next character to
be extracted from the input stream.

seekp : seek put; sets the position where the next character
is to be inserted into the output stream

Both functions reposition the file-position pointer.

Each istream object has a get pointer, the byte number in
the file from which the next input to occur.
Each ostream object has a put pointer, the byte number in
the file at which the next output should be placed.

File Position Pointers

istream and ostream provide member functions:

seekg : seek get; sets the position of the next character to
be extracted from the input stream.

istream& seekg(streampos pos);

seekp : seek put; sets the position where the next character
is to be inserted into the output stream

ostream& seekp(streampos pos);

Both functions reposition the file-position pointer.

Each istream object has a get pointer, the byte number in
the file from which the next input to occur.
Each ostream object has a put pointer, the byte number in
the file at which the next output should be placed.

File Position Pointers

istream and ostream provide member functions:

seekg : seek get;
inFile.seekg(0);
re-position the file-pointer to the beginning of the file

seekp : seek put;
 // get the pos. of the current char. in the output stream

long p = outFile.tellp();
 outFile.seekp(p-8); // put pointer 8 characters back

tellp() and getp() return the current locations of the get
and put pointers.

see seekExamples.cpp

Reading/Writing Quoted Text

Many text files contain quoted text.

Assume our account information file was formatted as follows:
192 “John Smith” 192.34

From C++ 14 we can use stream manipulator quoted.

It enables a program to read quoted text from a stream,
including any white space characters in the quoted text, and
discards the double quote delimeters.

InFile >> account >> quoted(name) >> balance;

Similarly, we can write quoted text to a stream.

In-class work

Assume that the file Account.txt contains the account
information and is formatted as follows:

<account number> <account holder name, quoted > <balance>
187 “Adam Lee” 12895.60

Assume that we are also given three files with various
transactions, formatted as follows:

<account number> <transaction amount>
187 90.50
187 -7658.64

If <transaction amount> is negative, it means that the amount
was withdrawn from the account
If <transaction amount> is positive, it means that this amount
was deposited into the account.

In-class work

Our goal is to process the Account.txt file and all the transaction
files, create a new file and put the updated information there.

The output file name should be “AccountUpdate.txt”

Some comments:
1) You are not allowed to use vectors, arrays, or any other
containers
2) The file Account.txt has unique accounts
3) transaction files can have multiple transactions for the same
account
4) your code must be well commented (almost every line of the
code)

HW assignment

1) Exercises 13.6, 13.7
2) recall the class Complex:
re-define the stream extraction operator (input stream) to be
able to get the input in the form 4 – 9i from the user. It should
determine whether the data entered is valid, and if it is not, it
should set failbit to indicate improper input.

Self-Study:
read sections 13.7 and 13.8

Optional (for self-development):
Sections 13.6.4

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

