

Stream Input/Output:
A Deeper Look

Chapter 13

Introduction

C++ uses type-safe Input/Ouput (I/O).

Each I/O operation is executed in a manner sensitive to the
data type:
● If an I/O function is defined to handle the particular data

type, then that function is called
● If not, the compiler generates an error.

Hence, improper data cannot “sneak” through the system.
It can occur in C and leads to some subtle and bizarre
errors.

Introduction

C++ uses type-safe Input/Ouput (I/O).

Each I/O operation is executed in a manner sensitive to the
data type:
● If an I/O function is defined to handle the particular data

type, then that function is called
● If not, the compiler generates an error.

Hence, improper data cannot “sneak” through the system.
It can occur in C and leads to some subtle and bizarre
errors.

Recall that we had to overload the output stream insertion
operator (<<) and input stream extraction operator (>>) for
class Complex,class Quadrilateral, etc.

Streams

C++ (I/O) occurs in streams (sequences of bytes)

In input operations: the bytes flow from a device (a keyboard,
a disk drive, a network connection) to main memory

In output operations: the bytes flow from main memory to a
device (a display, a printer, a network connection)

These transfers usually take much more time that the time
the processor requires to manipulate data internally.

Streams

C++ provides “low-level” and “high-level” I/O capabilities.

Low-level I/O (unformatted I/O): specify that some number of
bytes should be transferred device-to-memory or vice-versa

High-level I/O (formatted I/O): bytes are grouped into
meaningful units (integers, characters, string, floating-point
numbers, user-defined types)

Programmers generally prefer the later, which are
satisfactory for most I/O other than high-volume file
processing.

Streams

C++ provides “low-level” and “high-level” I/O capabilities.

Low-level I/O (unformatted I/O): specify that some number of
bytes should be transferred device-to-memory or vice-versa

High-level I/O (formatted I/O): bytes are grouped into
meaningful units (integers, characters, string, floating-point
numbers, user-defined types)

Programmers generally prefer the later, which are
satisfactory for most I/O other than high-volume file
processing.

Classic Streams vs. Standard Streams

Classic stream libraries supported only char-based I/O.

It limits the set of characters that can be displayed (one
byte): see the ASCII character set.

Unicode is an extensive international character set that
represents the majority of the world’s languages, math.
symbols and much more.

Original C++ type for processing Unicode: wchar_t
Starting from C++ 11: char14_t and char32_t

Standard stream libraries are implemented as class
templates and can be specialized for various character types

<iostream> header

<iostream> header declares the basic services required
for all stream I/O operations.

Class templates:
basic_istream : for stream input operations
basic_ostream : for stream output operations
basic_iostream provides both stream input and stream
output operations

<iostream> header

<iostream> header declares the basic services required
for all stream I/O operations.

Class templates:
basic_istream : for stream input operations
basic_ostream : for stream output operations
basic_iostream provides both stream input and stream
output operations

We used:
istream, alias for basic_istream<char> , enables char
input, and
ostream, alias for basic_ostream<char> that enables
char output.
iostream is an alias for basic_iostream<char> that
enables both char input and output

<iostream> header

cin has a type istream and is said to be predefined to be
connected to the standard input device (which is often a
keyboard)

int a;
cin >> a; // data “flows” in the direction of arrows

The compiler selects the appropriate overloaded stream
extraction operator >>, based on the type of a.

<iostream> header

cout has a type ostream and is said to be predefined to be
connected to the standard output device (which is often a
display screen)

int a = 23;
cout << a; // data “flows” in the direction of arrows

The compiler selects the appropriate overloaded stream
insertion operator <<, based on the type of a.

<iostream> header

cerr and clog are also a predefined object, an ostream
object, and is said to be connected to the standard error
device, normally the screen.

Outputs to object cerr are unbuffered, meaning that they
appear immediately. unbuffered standard error stream

Outputs to object clog are buffered. It means that each
insertion to clog could cause its output to be held in a
buffer, until the buffer is filled or until the buffer is flushed.
Buffering is an I/O performance-enhancement technique.

Stream Output

ostream provides formatted and unformatted capabilities

stream insertion operator << allows output of standard data
types

put member function provides output of characters, one-at-
a-time

write member function provides unformatted output

and many others

See outputExamples.cpp

Stream Input

istream provides formatted and unformatted capabilities as
well

stream extraction operator >> usually skips white-space
character

After each input, the stream extraction operator returns a
reference to the stream object that received the extraction
message, however it can be used in a condition (with implicit
conversion to bool type, starting from C++ 11).

get and getline

get member function extracts characters from the stream as
unformatted input.

(1) single character
int get();
istream& get (char& c);

(2) c-string
istream& get (char* s, streamsize n);
istream& get (char* s, streamsize n, char delim);

(3) stream buffer
istream& get (streambuf& sb);
istream& get (streambuf& sb, char delim);

See details at
http://www.cplusplus.com/reference/istream/istream/get/

http://www.cplusplus.com/reference/istream/istream/get/

get and getline

get member function with no arguments inputs one
character from the designated stream, including white-space
character and other nongraphic characters and returns it as
the value of the function call.

It returns EOF when the end of file is encountered in the
stream.

EOF usually has a value of -1 and is defined in a header that
is indirectly included via stream library headers like
<iostream>

get and getline

eof() is a member function of cin, checks for end-of-file. It
returns true if the end-of-file is reached, and false
otherwise.

Recall: <Ctrl> z (on Windows) and <Ctrl> d (on Linux and Mac)

get and getline

Let’s look at these examples:

● Using cin, eof, and get with no arguments:
inputAndOutputExample.cpp

● Using cin and get with two arguments:
inputAndOutputExample2.cpp

● Using cin and get with two and three arguments:
inputAndOutputExample3.cpp

get and getline

Member function geline operates similarly to the
istream& get (char* s, streamsize n, char delim);

version of the get, but it removes the delimeter from the
stream.

see inputAndOutputExample4.cpp

get and getline: final comments

● When working with get and getline and c-strings, the
null character '\0' is inserted at the end of the input.

● ignore function receives two arguments: a designated
number of characters to skip (1 by default) and the
delimiter at which to stop ignoring the characters (EOF by
default)

● putback function places the previously obtained character
by get function back into the stream.

● peek function returns the next character from the input
stream, but does not remove it from the stream

Unformatted I/O with read, write and gcount

● read (member function of istream) reads input bytes into a
built-in array of chars; if fewer than the designated number
of characters are read, failbit is set.

● write (member function of ostream) outputs bytes from a
built-in array of chars

these bytes are not formatted in any way, they are
input/output as raw bytes

● gcount (member function of istream) reports how many
bytes were read by the last input operation

see inputAndOutputExample5.cpp

Stream Manipulators

● We saw the following output stream manipulators so far:
● setw()
● left
● right
● setprecision()
● fixed

Stream Manipulators

● setprecision(10) is used together with fixed if we
would like to use the fixed-point notation of the decimal,
rounded off to 10 decimal places

It is a sticky manipulator, so once set, it will continue to “work”
until the setting is changed. No default parameter value.

Alternative: member function precision() of ostream.

double r{sqrt(7)};
cout << fixed << setprecision(10);
cout << r << endl;
cout.precision(8);
cout << r << endl;

A call precision() with no argument returns the current
precision.

Stream Manipulators

● setw(10) stream manipulator sets the field width

● width member function (of classes istream and
ostream) also sets the field width

● the width() call with no argument returns current setting

It is not a sticky manipulator, so it applies only to next
insertion/extraction operation.

If output value is narrower than the width, it is right alligned.
If output value is wider than the width, it will not be truncated.

When using with input stream, one less symbol is read.

See outputStreamManipulation.cpp

Stream Manipulators

Integers are usually interpreted as decimal values (base 10).
To change the base in which integers are interpreted ion a
steam, insert the

● hex manipulator to set to base 16 (hexadecimal)

● oct manipulator to set to base 8 (octal)

● dec manipulator to set to base 10 (decimal)

It is a sticky manipulator.

A stream’s case can also be changed by calling setbase(n)
parameterized stream manipulator, where n = 16, 10, or 8.

Stream Manipulators

Section 13.7 has a table of stream manipulators with
examples. Read it.

To return an output stream’s format to its default state use
flags member function:
● without parameters it returns the current format settings as

an fmtflags data type, which represents the format state.
● when called with parameter fmtflags sets the format state

as specified by the argument

See flags.cpp

Stream Error States

Each stream object contains a set of state bits that represents
a stream’s state – sticky format settings, error indicators, etc.

We can test it through bits of class ios_base – the base
class of stream classes.

Bits for input stream:
failbit is true if the wrong type of data is input
badbit is true if the operation fails in unrecoverable manner
eofbit is true if the end-of-file is encountered
goodbit is true if none of the bits above are set to true

After an error occurs, we can no longer use stream until we
reset its error state. Use clear member function to do it.

See errorStates.cpp

Tying an Output Stream and an Input Stream

During an interaction process, we alternate prompt statements
with output. The prompt should appear before the input
operation proceeds.

With buffered output, output appears only:
● when the buffer fills
● when the outputs are flushed explicitly by the program
● automatically at the end of the program

We can use function tie to synchronize the operation of
istream and ostream to ensure that output appears before
the subsequent input.

cin.tie(&cout); // to tie

inputStream.tie(0); // to untie

In-class work

Exercise 13.8 (Printing Pointer Values as Integers)
Write a program that prints pointer values, using casts to all
the integer data types.
Which one prints strange values?
Which one cause errors?

Visit https://en.cppreference.com/w/cpp/language/types to see
the integer types.

https://en.cppreference.com/w/cpp/language/types

HW assignment

1) Exercises 13.6, 13.7
2) recall the class Complex:
re-define the stream extraction operator (input stream) to be
able to get the input in the form 4 – 9i from the user. It should
determine whether the data entered is valid, and if it is not, it
should set failbit to indicate improper input.

Self-Study:
read sections 13.7 and 13.8

Optional (for self-development):
Sections 13.6.4

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

