
Chapter 18: Vector and Arrays

 2

Plan for today

● We will talk about:
– Essential operations
– Implicit conversions and explicit constructors
– Access to vector elements via []

● Overloading on const

– arrays
● Pointers to array elements
● Pointers and array
● Array initialization

– palindromes

 3

Essential operations

● Constructors from one or more arguments
● Default constructor

● Copy constructor (copy object of same type)
● Copy assignment (copy object of same type)
● Move constructor (move object of same type)
● Move assignment (move object of same type)
● Destructor

 4

Essential operations: when to define

● Constructors from one or more arguments
● Default constructor (meaningful and obvious default value)

● Copy constructor (copy object of same type)
● Copy assignment (copy object of same type)
● Move constructor (move object of same type)
● Move assignment (move object of same type)
● Destructor

 5

Essential operations: when to define

● Constructors from one or more arguments
● Default constructor (meaningful and obvious default value)

● Copy constructor (copy object of same type)
● Copy assignment (copy object of same type)
● Move constructor (move object of same type)
● Move assignment (move object of same type)
● Destructor

If an object has
acquired a resource
(and has a pointer
member pointing to
it), the default value
of copy is almost
certainly wrong

 6

Essential operations: when to define

● Constructors from one or more arguments
● Default constructor (meaningful and obvious default value)

● Copy constructor (copy object of same type)
● Copy assignment (copy object of same type)
● Move constructor (move object of same type)
● Move assignment (move object of same type)
● Destructor

A class needs a
destructor if it
acquires resources

 7

Initialization: implicit conversions and explicit constructors

● A problem:
– A constructor taking a single argument defines a conversion from the

argument type to the constructor’s type
– Our vector had vector::vector(int), so

vector v1 = 7; // v1 has 7 elements, each with the value 0
(odd)

v1 = 20; // v1 is now a new vector with 20 elements (even more
odd)

– This is very error-prone, unless of course this is what we want

 8

Initialization: implicit conversions and explicit constructors

● A solution:
– Declare constructors taking a single argument explicit

class vector {

 // …

 explicit vector(int);

 // …

};

 vector v1 = 7; // error: no implicit conversion from int

 v1 = 20; // error: no implicit conversion from int

 9

Access to vector elements

● So far we used get() and set() member functions to access
elements.

● Such access is verbose and ugly

 10

Access to vector elements

● So far we used get() and set() member functions to access
elements.

● Such access is verbose and ugly, how about [] access?
– a[4]=12.5; // create a vector of 10 elements

 11

Access to vector elements

● So far we used get() and set() member functions to access
elements.

● Such access is verbose and ugly, how about [] access?
– a[4]=12.5; // create a vector of 10 elements

● Define/overload the operator[]

double& operator[](int n)

 { return elem[n]; }

 12

operator[]

● We defined the operator[] as

 double& operator[](int n)

 { return elem[n]; }

● Recall that we passed the vector by reference, as a constant:

 double average(const vector& a)
– It won’t work with our implementation of the operator[]

 13

operator[]

● We defined the operator[] as

 double& operator[](int n)

 { return elem[n]; }

● Recall that we passed the vector by reference, as a constant:

 double average(const vector& a)
– It won’t work with our implementation of the operator[]

● To make it work, we will add one more definition:
double operator[](int n) const

 { return elem[n]; }

– This version of operator[] will be working with const vectors

 14

Arrays

● For a while we used array to refer to a sequence of objects
allocated on the free store

 15

Arrays

● For a while we used array to refer to a sequence of objects
allocated on the free store

● They don’t have to be on the free store. They are common as:
– global variables (often a bad idea) char name[20];
– local variables (have serious limitations)

 const int m = 10; // get value of n

int a[m]; int a[n]; // error
– function arguments (doesn’t know its size)
– class members (maybe hard to initialize)

 16

Arrays

● You might have a not-so-subtle bias in favor of vector(s) over arrays
● However, arrays existed long before vectors an are roughly

equivalent to what is offered in other languages (like C), so we must
know arrays (and know them well to be able to cope with older code
and with code written by people who don’t appreciate the
advantages of vector)

 17

Arrays

● An array is a homogeneous sequence of objects allocated in
contiguous memory; the elements are numbered from 0 upward

● In a declaration, an array is indicated by the []

 const int max = 100;

 int myArray[max];

 18

Arrays

● An array is a homogeneous sequence of objects allocated in
contiguous memory; the elements are numbered from 0 upward

● In a declaration, an array is indicated by the []

 const int max = 100;

 int myArray[max];

Local array “lives” until the end of its scope.

Limitation: the size of myArray must be known before the compile
time, so we have to plan ahead, we assumed that it will have at most
100 elements.

see the file arrayWork.cpp

 19

Address of: &

● You can get a pointer to any object, not just to objects on the free store
int a;

char ac[20];

void f(int n) {

int b;

int* p = &b; // pointer to individual variable

p = &a; // now point to a different variable

char* pc = ac; // the name of an array names a pointer to its first element

pc = &ac[0]; //equivalent to pc = ac

pc = &ac[n]; // pointer to ac’s nth element (starting at 0th)
// warning: range is not checked

}

pp

a

pc

ac

 20

Arrays (often) convert to pointers

void f(int pi[]) // equivalent to void f(int* pi)

 {

int a[] = { 1, 2, 3, 4 };

int b[] = a; // error: copy isn’t defined for arrays

b = pi; // error: copy isn’t defined for arrays.

pi = a; // ok: but it doesn’t copy: pi now points to a’s first element

 // Is this a memory leak? (maybe)

int* p = a; // p points to the first element of a

int* q = pi; // q points to the first element of a

}

 21

Pointers to array elements

double a[10];

double* p = &a[5]; // p points to a[5]

*p = 7.3;

p[2] = 5.1;

p[-3] = 9.2;

p += 2; // moves p 2 elements to the right

p -= 5; // moves p 5 elements to the left

for(p = &a[0]; p < &a[10]; ++p)

{ cout << *p << “ “; } // prints all the elements of a

for(p = &a[9]; p >= &a[0]; --p)

{ cout << *p << “ “; } // prints all the elements of a

 // backwards

 22

Be careful with arrays and pointers

char ch[20];

char* p = &ch[90];

// …

*p = 'a'; // we don’t know what this will overwrite

char* q; // forgot to initialize

*q = 'b'; // we don’t know what this will overwrite

 23

Pointers and arrays: more examples

Consider the function that counts the number of characters in a zero-
terminated array of characters:

int strlen(const char* p) // int strlen(const char a[])

{ int count = 0;

 While (*p) { ++ count; ++p;}

 return count;

}

// similar to standard library strlen()

char name[] = “Natalia”;

strlen(name); //ok

strlen(&name[0]); // ok

 24

Why bother with arrays?

● It’s all that C has
– In particular, C does not have vector
– There is a lot of C code “out there” (“a lot” means N*1B lines)
– There is a lot of C++ code in C style “out there” (“a lot” means N*100M lines)
– You’ll eventually encounter code full of arrays and pointers

● They represent primitive memory in C++ programs
– We need them (mostly on free store allocated by new) to implement better

container types
● Avoid arrays whenever you can

– They are the largest single source of bugs in C and (unnecessarily) in C++
programs

– They are among the largest sources of security violations, usually (avoidable)
buffer overflows

 25

Palindromes

● [simple definition] A palindrome is a word that is spelled the same
from both ends
– Examples: anna, madam, racecar, etc.

● [definition] A palindrome is a word, number, phrase, or other
sequence of symbols that reads the same backwards as forwards,
ignoring punctuation symbols and lower/upper case
– Examples: race car; Madam, I’m Adam!

 26

Palindromes using string

Idea: start reading the string from the front and the back, compare the letters,
move into the middle;

bool is_palindrome(const string& s) {

 int first = 0;

 int last = s.length() - 1;

 while (first < last) {

 if (s[first] != s[last]) return false;

 ++ first;

 --last;

 }

 return true;

}

 27

Palindromes using array

Idea: start reading the string from the front and the back, compare the letters,
move into the middle

bool is_palindrome(const char s[], int n) {

 int first = 0;

 int last = n - 1;

 while (first < last) {

 if (s[first] != s[last]) return false;

 ++ first;

 --last;

 }

 return true;

}

 28

Palindromes using pointers

Idea: start reading the string from the front and the back, compare the
letters, move into the middle

bool is_palindrome(const char* first, const char*
last) {

 while (first < last) {

 if (*first != *last) return false;

 ++ first;

 --last;

 }

 return true;

}
See the file palindromes.cpp for their use

 29

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

