

Object-Oriented Programming:
Polymorphism

Chapter 12

Polymorphism : Introduction

Polymorphism allows the programmer to treat derived
class members just like their parent class's members.

With polymorphism we can design and implement easily
extensible systems, i.e. new classes can be added with little
or no modification to the general portions of the program, as
longs as the new classes are part of the inheritance
hierarchy that the program processes generally.

Polymorphism : Introduction

Recall our Quadrilateral Hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

Polymorphism : Introduction

Recall our Quadrilateral Hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

I’m planning to design a system
that will be drawing these
geometric figures.

Polymorphism : Introduction

Recall our Quadrilateral Hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

I’m planning to design a system
that will be drawing these
geometric figures.

So I will introduce more
attributes and more methods,
including a method draw for the
base class Quadrilateral.

Polymorphism : Introduction

Recall our Quadrilateral Hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

I’m planning to design a system
that will be drawing these
geometric figures.

So I will introduce more
attributes and more methods,
including a method draw for the
base class Quadrilateral.

For each of the derived
classes, Trapezoid,
Parallelogram, etc
I will need to implement the function draw. So each object
will respond differently to the same message: draw.

Polymorphism : Introduction

Recall our Quadrilateral Hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

My system will be sending the
same message: draw to
elements of different types.

In the future, without modifying
the system, I can use
polymorphism to accommodate
additional classes, including the
ones I didn’t even think of
at this moment!

Relationships between objects in
an Inheritance Hierarchy

Let’s consider a series of examples to see how base/parent
class and derived/child class pointers can be aimed at
objects and how can they be manipulated.

● see Example1.cpp and the conclusion in the comment at
the end

● see Example2.cpp and the conclusion in the comment at
the end

● see Example3.cpp and the conclusion in the comment at
the end

Relationships between objects in
an Inheritance Hierarchy

Downcasting:

We saw in the examples 1-3 that base/parent class pointer
can be “aiming” at a derived/child class object, but it can
invoke only functions defined in the base/parent class.

We can cast (downcast) such a pointer to a derived class
pointer, however, it could be dangerous.

to be discussed

Virtual Functions and Virtual Destructors

Consider a situation when our driver-program draws different
kinds of shapes: quadrilaterals, trapezoids, rhombuses,
squares, …

It would be useful to treat all the shapes generally, as objects
of base class Quadrilateral, and use the base-class
Quadrilateral pointer to invoke the function draw, and
allow the program to determine dynamically (at runtime)
which derived-class draw function to use (based on the type
of the object to which the pointer points at this particular
moment)!

This is a polymorphic behavior!

With virtual functions, the type of the object, not the type of
the handle used to invoke the object’s member function,
determines which version of a virtual function to invoke.

Virtual Functions and Virtual Destructors

With virtual functions, the type of the object, not the type of
the handle used to invoke the object’s member function,
determines which version of a virtual function to invoke.

Syntax example:
virtual void draw() const;

Virtual Functions and Virtual Destructors

With virtual functions, the type of the object, not the type of
the handle used to invoke the object’s member function,
determines which version of a virtual function to invoke.

Syntax example:
virtual void draw() const override;

We can add the keyword override (starting from C++ 11)
to the prototype of every child/derived-class function that
overrides a base-class virtual function.
● this will ensure that we override a base/parent-class

function with the appropriate signature, and
● this will prevent us from hiding a base/parent-class function

that has the same name and different signature

see virtualFunctionsExample.h and virtualFunctionsExample.cpp

Virtual Functions and Virtual Destructors

A similar situation is with destructors, when working with
dynamically allocated memory:
if a derived-class object with a non-virtual destructor is
destroyed by applying the delete operator to a base-class
pointer to the object, the C++ standard specifies that the
behavior is undefined.

Hence, announce the base-class destructor as virtual:
virtual ~Quadrilateral(…) {};

When a derived-class object is destroyed, both destructors
(the derived and base class’s) execute.

Virtual Functions and Virtual Destructors

A similar situation is with destructors, when working with
dynamically allocated memory:
if a derived-class object with a non-virtual destructor is
destroyed by applying the delete operator to a base-class
pointer to the object, the C++ standard specifies that the
behavior is undefined.

Hence, announce the base-class destructor as virtual:
virtual ~Quadrilateral(…) {};

When a derived-class object is destroyed, both destructors
(the derived and base class’s) execute.

Note that constructors cannot be virtual !

final member functions and classes

Starting from C++ 11, if we want to announce that a function
should not be overridden in child classes,we announce it as
final in its prototype:

virtual play(…) final;

So it will be used by all objects of the parent class and all
objects of child classes.

final member functions and classes

Starting from C++ 11, if we want to announce that a function
should not be overridden in child classes,we announce it as
final in its prototype:

virtual play(…) final;

So it will be used by all objects of the parent class and all
objects of child classes.

Similarly, if we don’t want a class to be used as parent/base
class, we will announce it as final:

class myClass final {
// this class cannot be a base class
…
};

HW assignment

2) Explore the idea of making functions of Area and
Perimeter as virtual functions in our Quadrilateral class
hierarchy that so far consists of classes Quadrilateral,
Trapezoid, Rectangle and Square.

What do you need to do for it?

Do you need to also announce these functions as virtual in
Quadrilateral and Trapezoid classes?

Do it!

Self-Study:
read sections 12.6 – 12.7

Optional (for self-development):
sections 12.8 and 12.9

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

