
Chapter 18: Vector and Arrays

 2

Plan for today

● We will talk about:
– doubly linked list nodes (the in-class practice from previous meeting)

(17.9.3)
– initialization of vector objects
– copy constructors (recall HW 7 assignment)
– copy assignments
– copy terminology
– moving

 3

In-class practice from previous class

● Consider the following struct:
struct Link{

 string value;

 Link* prev;

 Link* succ;

 Link(const string& str, Link* p = nullptr,

 Link* s = nullptr):

 value{str}, prev{p}, succ{s}

 {}

};

 4

In-class practice from previous class

– Let’s create the following connected list of those Links:

JosephMaria Annie

node1 node2 node3

 5

Vector class – what we have so far
class vector {

 int sz; // the size

 double* elem; // a pointer to the elements

public:

 vector(int s); // constructor

 ~vector(); // destructor

 double get(int n) const; // access:read

 void set(int n, double v); // access:write

 int size() const; // the current size

 // a member function that would display the values of the vector object

 void display() const;

 void resize(int newSz); // resizes to new size, copies the existing elements

 vector& operator=(const vector& other); // overloading the assignment operator, with chaining a = b = c

 void copy(const vector* other); // HW 7 assignment

};

std::ostream& operator<<(std::ostream& out, const vector& v); // overload opeartor<<

 6

Initialization

● So far, when declaring an object of type vector, we supply the size:
– vector a(10); // create a vector of 10 elements

 7

Initialization

● So far, when declaring an object of type vector, we supply the size:
– vector a(10); // create a vector of 10 elements

● What if we want to declare and initialize a vector object?
– vector a1 = {1,5,2,3,6,7};

– it is much better than initializing to default values, and then assigning the
new values like a[2]=5

 8

Initialization

● So far, when declaring an object of type vector, we supply the size:
– vector a(10); // create a vector of 10 elements

● What if we want to declare and initialize a vector object?
– vector a1 = {1,5,2,3,6,7};

– it is much better than initializing to default values, and then assigning the
new values like a[2]=5

● A { }-delimited list of elements of type T is presented to the
programmer as an object of the standard library type
initializer_list<T>, a list of Ts

 9

Initialization

● So far, when declaring an object of type vector, we supply the size:
– vector a(10); // create a vector of 10 elements

● What if we want to declare and initialize a vector object?
– vector a1 = {1,5,2,3,6,7};

– it is much better than initializing to default values, and then assigning the
new values like a[2]=5

● A { }-delimited list of elements of type T is presented to the
programmer as an object of the standard library type
initializer_list<T>, a list of Ts, so we can write:

vector(std::initializer_list<double> lst)

 : sz(lst.size()), elem{ new double[sz]} {

 std::copy(lst.begin(), lst.end(), elem); }

 10

Initialization: lists and sizes

● If we initialize a vector by 17 is it
– 17 elements (with value 0)?
– 1 element with value 17?

● By convention use
– () for number of elements
– {} for elements

● For example
– vector v1(17); // 17 elements, each with the value 0
– vector v2 {17}; // 1 element with value 17

 11

Copying

● Copy constructor
– vector(const vector& other);

– Examples:
● vector c{a1};
● vector b = a1;

– The vector object is being created, so it’s a “fresh start”
● Copy assignment

– vector& operator=(const vector& other);

– The vector object already exists, so we need to deal with the old
elements

See vector.h and vectorTesting.cpp

 12

Copy terminology

● Shallow copy: copy only a pointer so that the two pointers now refer
to the same object
– What pointers and references do

 13

Copy terminology

● Shallow copy: copy only a pointer so that the two pointers now refer
to the same object
– What pointers and references do

x

y

copy of x

 14

Copy terminology

● Shallow copy: copy only a pointer so that the two pointers now refer
to the same object
– What pointers and references do

● Deep copy: copy what the pointer points to so that the two pointers
now each refer to a distinct object
– What vector, string, etc. do
– Requires copy constructors and copy assignments for container

classes
– Must copy “all the way down” if there are more levels in the

object

x

y

copy of x

 15

Copy terminology

● Shallow copy: copy only a pointer so that the two pointers now refer
to the same object
– What pointers and references do

● Deep copy: copy what the pointer points to so that the two pointers
now each refer to a distinct object
– What vector, string, etc. do
– Requires copy constructors and copy assignments for container

classes
– Must copy “all the way down” if there are more levels in the

object

x

y

copy of x

x

y

copy of x

copy of y

 16

Moving: move constructor and assignment

● If a vector has a lot of elements, it can be expensive to copy
● We can “move” (steal) information from one vector to another by

defining move operations to complement copy operations:
– vector(vector&& a); // move constructor
– vector& operator=(vector&& a);

// move assignment

– && is called an “rvalue reference”
– Note that we do not take const arguments, because our goal is

to modify the source, to make it empty

 17

Moving: move constructor

vector(vector&& a) // move constructor

 :sz{a.sz}, elem{a.elem} // copy a’s elem and sz

{

 a.sz = 0; // make a the empty vector

 a.elem = nullptr;

}

 18

Moving: move assignment

vector& operator=(vector&& a)

{

 delete[] elem; // deallocate old space

 elem = a.elem; // copy a’s elem and sz

 sz = a.sz;

 a.elem = nullptr; // make a the empty vector

 a.sz = 0;

 return *this; // return a self-reference

}

See vector.h and vectorTesting.cpp

 19

Moving

● Using move constructor explicitly:

 vector x = std::move(a1);

● Using move assignment explicitly:

 b = x;

● We can use “moving” to implement keyboard input of vector
elements (it’s not working yet, just an idea)

See vector.h and vectorTesting.cpp

 20

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

