

Object-Oriented Programming:
Inheritance

Chapter 11

Inheritance: terminology

Inheritance is a technique that allows us to define a new
(child / derived) class based upon an existing (parent / base)
class.

The child / derived class inherits all of the members of its
parent / base class.

Inheritance: terminology

Inheritance is a technique that allows us to define a new
(child / derived) class based upon an existing (parent / base)
class.

The child / derived class inherits all of the members of its
parent / base class.

 It reduces the duplication of existing code, and
 It can save time during program development by taking

advantage of proven, high-quality, already defined classes

Inheritance: terminology

The child / derived class may

 introduce one or more behaviors beyond those that are
inherited (augmenting the parent / base class)

 specialize one or more of the inherited behaviors from the
parent (provide an alternative definition for the inherited
method, i.e. override the original definition)

Inheritance: terminology

The child / derived class may

 introduce one or more behaviors beyond those that are
inherited (augmenting the parent / base class)

 specialize one or more of the inherited behaviors from the
parent (provide an alternative definition for the inherited
method, i.e. override the original definition)

- these techniques are not necessarily used in isolation

- a single class can serve as parent / base class for many
different child / derived classes

- single child / derived class can inherit from multiple parent /
base classes (multiple inheritance)

is-a vs has-a relationships

The relationship between a parent and child class when
using inheritance is often termed as is-a relationship,
meaning that the object of the child class also can be treated
 as an object of its parent class.

Example: square is a quadrilateral.
We can define class Quadrilateral and it will be the
base class of class Square.

When one class is implemented using an instance variable
of another, it is termed as has-a relationship.

Example: class MixedNumber can have objects of types
int and Rational as its attributes.

is-a vs has-a relationships

In general, there is not always a clear-cut rule for when to
use inheritance and when to use has-a relationship.

The decision comes down to the number of potentially
inherited behaviors that are undesirable versus the number
of desirable ones that would need to be explicitly
regenerated if using a has-a relationship.

is-a vs has-a relationships

In general, there is not always a clear-cut rule for when to
use inheritance and when to use has-a relationship.

The decision comes down to the number of potentially
inherited behaviors that are undesirable versus the number
of desirable ones that would need to be explicitly
regenerated if using a has-a relationship.

Base class Derived classes
Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere,
Cube

Loan CarLoan, HomeImprovementLoan,
MortgageLoan

Employee Faculty, Stuff

Account CheckingAccount, SavingsAccount

Inheritance

C++ offers public, protected and private inheritance.

class derived-class: access-specifier base-class

Inheritance

C++ offers public, protected and private inheritance.

class derived-class: access-specifier base-class

Public Inheritance: with public base class, public members of
the base class become public members of the derived class and
protected members of the base class become protected members
of the derived class. A base class's private members are never
accessible directly from a derived class, but can be accessed
through calls to the public and protected members of the base
class.

Protected Inheritance: with protected base class, public and
protected members of the base class become protected members
of the derived class.

Private Inheritance: with private base class, public and
protected members of the base class become private members of
the derived class.

Inheritance

C++ offers public, protected and private inheritance.

class derived-class: access-specifier base-class

● When access specifier is not used, it is private by
default.

● In this chapter we will work only with public inheritance.

● Inheritance relationships form class hierarchies

● A derived class represents a more specialized group of
objects.

Access types

Access public protected private

same class yes yes yes

child/derived class yes yes no

outside class yes no no

the different access types according to who can access
them:

Class Hierarchy

Consider a student inheritance hierarchy at a university
(exercise 11.8):

Example

Let’s create a quadrilaterals inheritance hierarchy that would
include trapezoids, parallelograms, rhombuses, rectangles
and squares. We will use the class Quadrilateral as
the base/parent class for this hierarchy:

Quadrilateral

Trapezoid

Parallelogram

Rhombus Rectangle

Square

HW assignment

1) Use the classes we defined, write the header and the
implementation of the Rectangle and Square classes

(a) The objects of class Rectangle will be created from two
points : top left point and bottom right point:

An example of the declaration:
Rectangle r1(Point(10,200),Point(80,50));

P

Q

HW assignment

(b) The objects of class Square will be created from the
center point and the length of the side:

An example of the declaration:
Square s1(Point(60,100), 80));

(c) For both of the classes, define Area member function,
overload Perimeter member function and overload output
stream operator << to display the corresponding information
about them.

P ss

s

s

HW assignment

(d) Define the Point:slope method. At this moment, the
method simply returns 0.

(e) for the class Rectangle, add public methods
getLength() and getWidth() that return the length and
the width, correspondingly.

(f) for the class Square, add public method getSide() that
returns the length of each side.

HW assignment

Suggested exercises
(not for grade, but the questions related to these will appear
on a quiz or a test):
1) Chapter 11, Self-Review Exercises

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

