
  

Operator overloading
Class string

(part 2)

Chapter 10



  

Today we will

We will work on the Array class and along the way we 
will discuss

● Dynamic memory management
● Destructors
● Copy constructors
● Overloading operators as member functions and as non-

member functions



  

Dynamic Memory Management

Consider the following code fragment:

int *x, *y, *z;
x = new int;
*x = 3;
y = new int;
*y = 4;
z = x;
x = y;

delete z;
delete y;

new statement allocates dynamic memory and returns the 
starting address.

delete statement deallocates memory that was 
dynamically allocated.   see dynamicMemoryAllocation1.cpp



  

Dynamic Memory Management

Remember: each new statement that is executed must 
eventually have a corresponding delete statement that is 
executed to deallocate the memory.

If you forget a delete statement, your program will have a
memory leak. Even though a program with memory leak may 
not crash, the code is considered incorrect.



  

Dynamic Memory Management

Dynamic Arrays

A dynamic array is explicitly declared as a pointer:

int *a;

It is given an initial size using the new operator:

a = new int[5];

A dynamic array can be expanded: its items can be copied
into a larger area, whose address can be assigned to the
original variable.



  

Dynamic Memory Management: Dynamic Arrays

Consider the following code fragment:

int *data, *temp, i;

data = new int[5];

for (i=0; i<5; ++i) {
    data[i] = i; }

temp = new int[10];

for (i=0; i<5; ++i) {
    temp[i] = data[i];}

delete [] data;
data = temp;

for (i=0; i<10; ++i) {
    data[i] = i; }
delete [] data; see dynamicMemoryManagement2.cpp



  

Dynamic Memory Management: Dynamic Arrays

Starting from C++ 11, there is a “smart pointer” unique_ptr 
for managing dynamically allocated memory.

When a unique_ptr goes out of scope, its destructor 
automatically returns the managed memory fo the free store.

We will use it in Chapter 17.



  

class Array

Let’s define a class Array, which will be
 a fixed size array
 with all elements of type int 
 the space for the array will be allocated dynamically
 will have a copy constructor   

Array a(b) or Array a{b} 
 will have comparison for equal/not-equal           a == b
 will have indexing/subscript operator [ ]             a[5]
 will have the assignment operator                     a = b

See array.h, array.cpp and testingArray.cpp 



  

Operator Overloading summary

✔ C++ does not allow new operators to be created, but

✔ it does allow most existing operators to be overloaded

✔ when operators are overloaded as member-functions, they 
must be non-static (since they will be called on a object of a 
class)

✔ operators that cannot be overloaded:  .    .*     ::      ?:

✔ an operator’s precedence cannot be changed by 
overloading (we can use parentheses for force the order of 
evaluation)

✔ an operator’s associativity cannot be changed by 
overloading

pointer to member



  

Operator Overloading summary

✔ an operator’s ”arity” (number of operands) cannot be 
changed by overloading

✔ we cannot overload operators to change how an operator 
works on fundamental-type values, i.e.

✔ operator overloading works only with user-defined types or 
with a mixture of an object of user-defined type and an 
object of fundamental type.



  

Operator Overloading summary

✔ related operators, like + and +=, must be overloaded 
separately

✔ when overloading ( ), [ ], → or any other assignment 
operator, the overloading function must be declared as a 
class member

✔ for all other overloadable operators, the operator 
overloading functions can be member functions or non-
member functions 



  

Member vs Non-Member Functions

Recall the equality operator overloading for the class 
Array:

class Array {
...

public:
...
bool operator==(const Array&) const; 
...

It is overloaded as a member function



  

Member vs Non-Member Functions

We could also overload it as a non-member function:

class Array {
...

public:
…

};

bool operator==(const Array&, const Array&); 

In some cases, we need to announce them as friend 
functions in order to have access to the attributes of the 
class



  

Member vs Non-Member Functions

Overloaded operator functions can be member functions 
only when the left operand is an object of the class in which 
the function is a member.

Recall that we overloaded the operator>> and the 
operator<< as non-member, friend functions.



  

Unwanted Member Functions

Sometimes, we want to prohibit some operations on object of 
a class, for example, copy constructor, or assignment 
operator.

In this case we can:
✔ declare them as private 
✔ starting from C++ 11: delete them from our class:

Array(const Array&) = delete;

or

const Array& operator=(const Arrya&) = 
delete;



  

Overloading Function Call Operator()

Consider this code fragment:

String String::operator()(size_t startIndex, 
size_t endIndex) const {

// check the range
// return the sub-string starting from
// position startIndex, and ending with
// position endIndex, including
}
...
String st1="Social"
st1(2,4)  // generates call st1.operator(2,4)
   returns “cia”



  

HW assignment

2) add the following to the class Complex:
(a) overload the input stream operator to get the real and the 
imaginary parts of a complex number (cin << a)

(b) overload the operator== , the comparison for equality of 
two complex numbers (do it as member method)
bool operator==(const Complex& other) const;

(c) overload the operator!= , the comparison for not-equal of 
two complex numbers (do it as member method)
bool operator!=(const Complex& other) const;

(d) overload the + , -, /, and * operators, as member methods
Complex operator+(const Complex& other) const;
Complex operator-(const Complex& other) const; 
...



  

HW assignment

Self-Study:
10.12 Converting Between Types
10.13 explicit Constructors and Conversion Operators

Suggested exercises
(not for grade, but the questions related to these will appear 
on a quiz or a test):
2) Chapter 10, Exercises 10.10 and 10.11



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

