
Chapter 17: Vector and Free Store

 2

Plan for today

● We will talk about:
– Memory deallocation
– Memory leaks
– Simplified vector class

 3

The sizeof operator

● So how much memory does an int really take up? A pointer?
– The operator sizeof answers such questions

int a = 10;

int* p = &a;

cout << "An integer occupies "<< sizeof(a)<<" bytes\n";

cout << "A pointer to an integer occupies "

 << sizeof(p) << " bytes\n";

char* pc = &c;

cout << "A char occupies " << sizeof(c) << " bytes\n";

cout << "A pointer to a char occupies "

 << sizeof(pc) << " bytes\n";

See more in sizeOfoperatorUse.cpp

 4

Pointers, arrays, and vector
Note:

● With pointers and arrays we are "touching" hardware directly with only
the most minimal help from the language. Here is where serious
programming errors can most easily be made, resulting in
malfunctioning programs and obscure bugs
– Be careful and operate at this level only when you really need to
– If you get "segmentation fault", "bus error", or "core dumped",

suspect an uninitialized or otherwise invalid pointer
● vector is one way of getting almost all of the flexibility and performance

of arrays with greater support from the language (read: fewer bugs and
less debug time).

 5

free store deallocation

● The new operator allocates (“get”) the memory from the free store
● Computer’s memory is limited, hence
● It is a good idea to “return” memory to the free store once we

finished using it
– delete frees the memory for an individial object allocated by
new

– delete [] frees the memory for an array of objects allocated
by new

● If we do not deallocate the memory, we will have a memory leak.

 6

free store deallocation: examples

int* p = new int{6}; // allocate one initialized to 6 int

int* q = new int[7]; // allocate seven uninitialized ints
...

delete p;

delete [] q;

 7

free store deallocation: errors

Deleting an object twice is a mistake:
int* p = new int{6};

delete p; // ok, p points to an object created by new

// … no use of p here …

delete p; // error: p points to memory owned by the free-store
manager

 8

free store deallocation: errors

Deleting an object twice is a mistake:
int* p = new int{6};

delete p; // ok, p points to an object created by new

// … no use of p here …

delete p; // error: p points to memory owned by the free-store manager

Two problems with the second delete:
● We don’t own the object pointed to anymore so the free-store manager

may have changed the internal data structure in such a way that it can’t
correctly execute delete p again.

● The free-store manager may have “recycled” the memory pointed to by
p so that p now points to another object: deleting that object (owned by
some other part of the program) will cause errors in our program.

 9

free store deallocation: nullptr

Deleting null pointer doesn’t do anything, because the nullptr doesn’t
point to an object, so deleting it is harmless.

int* p = nullptr;

delete p; // ok, no action is needed

// … no use of p here …

delete p; // ok, still no action is needed

 10

Vector (construction and primitive access)
● a very simplified vector of doubles:
class vector{

 int sz; // the size

 double* elem; // a pointer to the elements
public:

 vector(int s): sz(s), elem(new double[s]) // constructor
 {

 for(int i{0}; i<s; ++i) elem[i] = 0;

 }

};

 11

Vector (construction and primitive access)
● a very simplified vector of doubles:
class vector{

 int sz; // the size

 double* elem; // a pointer to the elements
public:

 vector(int s): sz(s), elem(new double[s]) // constructor
 {

 for(int i{0}; i<s; ++i) elem[i] = 0;

 }

 double get(int n) const {return elem[n]}; // access:read

 void set(int n, double v) { elem[n] = v;} // access:write

 int size() const {return sz;} // the current size
};

 12

Vector (construction and primitive access)
● a very simplified vector of doubles:
class vector{

 int sz; // the size

 double* elem; // a pointer to the elements
public:

 vector(int s): sz(s), elem(new double[s]) // constructor
 {

 for(int i{0}; i<s; ++i) elem[i] = 0;

 }

 double get(int n) const {return elem[n];}; // access:read

 void set(int n, double v) { elem[n] = v;} // access:write

 int size() const {return sz;} // the current size
};

If we do not deallocate
the memory we will
have a memory leak

 13

Vector (construction and primitive access)
● a very simplified vector of doubles:
class vector{

 int sz; // the size

 double* elem; // a pointer to the elements
public:

 …

 ~vector() // destructor
 { delete [] elem; }

};

If we do not deallocate
the memory we will
have a memory leak

 14

Memory leaks

● A program that needs to run “forever” can’t afford any memory leaks
– An operating system is an example of a program that “runs forever”

● If a function leaks 8 bytes every time it is called, how many days can it
run before it has leaked/lost a megabyte?
– Trick question: not enough data to answer, but about 130,000 calls

● All memory is returned to the system at the end of the program
– If you run using an operating system (Windows, Unix, whatever)

● Program that runs to completion with predictable memory usage may
leak without causing problems
– i.e., memory leaks aren’t “good/bad” but they can be a major

problem in specific circumstances

 15

Memory leaks

● Another way to get a memory leak

void f()

{

double* p = new double[27];

// …

p = new double[42];

// …

delete[] p;

}

p

1st value

2nd value

// 1st array (of 27 doubles) leaked

 16

Memory leaks

● How do we systematically and simply avoid memory leaks?
– don't mess directly with new and delete

● Use vector, etc.
– Or use a garbage collector

● A garbage collector is a program the keeps track of all of your
allocations and returns unused free-store allocated memory to
the free store (not covered in this course; see
http://www.stroustrup.com/C++.html)

● Unfortunately, even a garbage collector doesn’t prevent all
leaks

● See also Chapter 25 (self-development)

 17

Free store summary
● Allocate using new

– New allocates an object on the free store, sometimes initializes it, and returns a pointer to
it

int* pi = new int; // default initialization (none for int)

char* pc = new char('a'); // explicit initialization

double* pd = new double[10]; // allocation of (uninitialized) array

– New throws a bad_alloc exception if it can't allocate (out of memory)
● Deallocate using delete and delete[]

– delete and delete[] return the memory of an object allocated by new to the free store so
that the free store can use it for new allocations

delete pi; // deallocate an individual object

delete pc; // deallocate an individual object

delete[] pd; // deallocate an array

– Delete of a zero-valued pointer ("the null pointer") does nothing
char* p = 0; // C++11 would say char* p = nullptr;

delete p; // harmless

 18

In-class practice

● Consider the following code fragment:
int *b{ nullptr }, *c{ nullptr }, x, y;

x = 3;

y = 5;

b = &x;

c = &y;

*b = 4;

*c = *b + *c;

c = b;

*c = 2;
● Let’s make a sketch of the memory for it:

 19

In-class practice

● Let’s use the implementation of our simplified vector of doubles:
– Use it to create a vector of 10 elements:

 {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
– Display all the values of the vector
– Define a member function that would display the values of the

vector
– Overload the cout operator<< to be used with objects of this class
– Define a member function resize (int newSz) that will

resize the vector to the new size, preserving all the existing
elements

 20

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

