
Chapter 17: Vector and Free Store

 2

Plan for today

● We will talk about:
– vector class (again, but in more details)
– Memory
– Addresses
– Pointers

 3

Vector
● Vector is the most useful container

– Simple

– Compactly stores elements of a given type

– Efficient access

– Expands to hold any number of elements

– Optionally range-checked access

 4

Vector
● Vector is the most useful container

– Simple

– Compactly stores elements of a given type

– Efficient access

– Expands to hold any number of elements

– Optionally range-checked access

● How is that done?

– That is, how is vector implemented?
● We'll answer that gradually, feature after
feature

 5

Vector
● Vector is the most useful container

– Simple
– Compactly stores elements of a given type
– Efficient access
– Expands to hold any number of elements
– Optionally range-checked access

● How is that done?
– That is, how is vector implemented?

● We'll answer that gradually, feature after
feature

● Vector is the default container
– Prefer vector for storing elements unless there's
a good reason not to

 6

Building from the ground up

● The hardware provides memory and addresses
– Low level
– Untyped, Fixed-sized chunks of memory
– No checking
– As fast as the hardware architects can make it

 7

Building from the ground up

● The hardware provides memory and addresses
– Low level
– Untyped, Fixed-sized chunks of memory
– No checking
– As fast as the hardware architects can make it

● The application builder needs something like a vector
– Higher-level operations
– Type checked
– Size varies (as we get more data)
– Run-time range checking
– Close to optimally fast

 8

Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system
can handle

● That number can vary over time
– E.g. by using push_back()

 9

Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system
can handle

● That number can vary over time
– E.g. by using push_back()

● Example:

vector<double> age(4);

age[0]=.33;

age[1]=22.0;

age[2]=27.2; age[3]=54.2;

 10

Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system
can handle

● That number can vary over time
– E.g. by using push_back()

● Example:

vector<double> age(4);

age[0]=.33;

age[1]=22.0;

age[2]=27.2; age[3]=54.2;

4

0.33 22.0 27.2 54.2

age:

 11

Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system
can handle

● That number can vary over time
– E.g. by using push_back()

● Example:

vector<double> age(4);

age[0]=.33;

age[1]=22.0;

age[2]=27.2; age[3]=54.2;

4

0.33 22.0 27.2 54.2

age:

From where does the vecor gets
the space for its elements?

 12

The computer’s memory

● When we start a C++ program,

the compiler sets aside memory for
– our code, called code storage/text storage/code,
– local variables, including arguments in

function calls, called stack
– global variables we define, called

static storage / static data

 13

The free store

● The free store is sometimes called “the heap”

and is used for dynamic memory

allocation

 14

The free store

● The free store is sometimes called “the heap”

and is used for dynamic memory

allocation
● We request memory “to be allocated” “on the

free store” by the new operator
– The new operator returns a pointer to the

allocated memory
– A pointer is the address of the first byte of the

memory

 15

The free store
● Example:

int* p = new int; // allocate one uninitialized int
 // int* means “pointer to int”

int* q = new int[7]; // allocate seven uninitialized ints

 // “an array of 7 ints”

double* pd = new double[n]; // allocate n uninitialized doubles
● A pointer points to an object of its specified type
● A pointer does not know how many elements it points to

p:

q:

 16

Access

● Individual elements

int* p1 = new int; // get (allocate) a new uninitialized int

int* p2 = new int(5); // get a new int initialized to 5

???

p1

5

p2

 17

Access

● Individual elements

int* p1 = new int; // get (allocate) a new uninitialized int

int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

 // (or “get the contents of what p2 points to”)

 // in this case, the integer 5

int y = *p1; // what does it do?

???

p1

5

p2

 18

Access

● Individual elements

int* p1 = new int; // get (allocate) a new uninitialized int

int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

 // (or “get the contents of what p2 points to”)

 // in this case, the integer 5

int y = *p1; // undefined: y gets an undefined value; don’t do that

???

p1

5

p2

 19

Access

● Arrays (sequences of elements)

int* p3 = new int[5]; // get (allocate) 5 ints

 // array elements are numbered [0], [1], [2], …

7 9

p3
[0] [1] [2] [3] [4]

 20

Access

● Arrays (sequences of elements)

int* p3 = new int[5]; // get (allocate) 5 ints

 // array elements are numbered [0], [1], [2], …

p3[0] = 7; // write to (“set”) the 1st element of p3

p3[1] = 9;

int x2 = p3[1]; // get the value of the 2nd element of p3

int x3 = *p3; // use the dereference operator * for an array

 // *p3 means p3[0] (and vice versa)

7 9

p3
[0] [1] [2] [3] [4]

 21

Why use free store?

● To allocate objects that have to outlive the function that creates
them:
– For example

double* make(int n) // allocate n ints
{
 return new double[n];
}

- Another example: vector’s constructor

 22

Pointer values

● Pointer values are memory addresses
– Think of them as a kind of integer values
– The first byte of memory is 0, the next 1, and so on

7

// you can see a pointer value (but you rarely need/want to):
int* p1 = new int(7); // allocate an int and initialize it to 7
double* p2 = new double(7); // allocate a double and initialize it to 7.0
cout << "p1==" << p1 << " *p1==" << *p1 << "\n"; // p1==??? *p1==c
cout << "p2==" << p2 << " *p2==" << *p2 << "\n"; // p2==??? *p2=7

p2 *p20 1 2

 23

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

8.2
7.3

p1

 24

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error

8.2
7.3

p1

 25

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error

double* p2 = new double[100];
*p2 = 7.3; // ok
p2[17] = 9.4; // ok

8.2
7.3

7.3

p2

p1

 26

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100]; p1

p2

 27

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4; // error (obviously)

p1

p2

 28

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4; // error (obviously)
p1 = p2; // assign the value of p2 to p1

p1

p2

p1

 29

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4; // error (obviously)
p1 = p2; // assign the value of p2 to p1

p1[17] = 9.4; // now ok: p1 now points to the
 // array of 100 doubles

p1

p2

p1

 30

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*

 31

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer to one value

type to a pointer to another value type

 32

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer to one value

type to a pointer to another value type
● However, there are implicit conversions between value types:

*pc = 8; // ok: we can assign an int to a char
*pc = *pi1; // ok: we can assign an int to a char

 33

Access

● A pointer does not know the number of elements that it's
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer to one value

type to a pointer to another value type
● However, there are implicit conversions between value types:

*pc = 8; // ok: we can assign an int to a char
*pc = *pi1; // ok: we can assign an int to a char7

pi1

7

pc

 34

References
● “reference” is a general concept
int i = 7;

int& r = i;

r = 9; // i becomes 9

const int& cr = i;

// cr = 7; // error: cr refers to const
i = 8;

cout << cr << endl; // write out the value of i (that’s 8)
● You can think of a reference as an alternative name for an object (alias)
● You can’t modify an object through a const reference (recall passing

parameters by reference)
● You can’t make a reference refer to another object after initialization

 35

For loop example with and without references

● Consider the following range-for loops:
for (string s : v) cout << s << \n ;″ ″
// s is a copy of some v[i]

for (string& s : v) cout << s << \n ;″ ″
// no copy

for (const string& s : v) cout << s << \n ;″ ″
// and we don’t modify v

 36

Pointers and references

● Think of a reference as an automatically dereferenced pointer
– Or as “an alternative name for an object”
– A reference must be initialized
– The value of a reference cannot be changed after initialization

 37

Pointers and references

● Think of a reference as an automatically dereferenced pointer
– Or as “an alternative name for an object”
– A reference must be initialized
– The value of a reference cannot be changed after initialization

int x = 7;

int y = 8;

int* p = &x; *p = 9;

p = &y; // ok

int& r = x; x = 10;

r = &y; // error (and so is all other attempts to change what r refers to)

 38

In-class practice

● Allocate an array of 100 floating point values on the free store using new.
Initialize it with values 2*i+1, where I runs from 0 to 99. Display all the
values using cout. Deallocate the array (using delete []) and
announce that it was deallocated.

● Write a function displayArray(ostream& out, double *a, int
n) that prints out the values of a, assuming that a has n elements, to
out.

● Consider the following code and make a sketch of the memory for it:
int x = 7, y = 8;

int* p = &x; *p += 5;

int *p2 = new int;

*p2 = *p;

delete p2;

 39

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

