
Chapter 17: Vector and Free Store
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Plan for today

● We will talk about:
– vector class (again, but in more details)
– Memory
– Addresses
– Pointers 
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Vector
● Vector is the most useful container

– Simple

– Compactly stores elements of a given type

– Efficient access

– Expands to hold any number of elements

– Optionally range-checked access
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● How is that done?

– That is, how is vector implemented?
● We'll answer that gradually, feature after 
feature
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Vector
● Vector is the most useful container

– Simple
– Compactly stores elements of a given type
– Efficient access
– Expands to hold any number of elements
– Optionally range-checked access

● How is that done?
– That is, how is vector implemented?

● We'll answer that gradually, feature after 
feature

● Vector is the default container
– Prefer vector for storing elements unless there's 
a good reason not to
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Building from the ground up

● The hardware provides memory and addresses
– Low level
– Untyped, Fixed-sized chunks of memory
– No checking
– As fast as the hardware architects can make it
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Building from the ground up

● The hardware provides memory and addresses
– Low level
– Untyped, Fixed-sized chunks of memory
– No checking
– As fast as the hardware architects can make it

● The application builder needs something like a vector
– Higher-level operations
– Type checked
– Size varies (as we get more data)
– Run-time range checking
– Close to optimally fast
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Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system 
can handle

● That number can vary over time
– E.g. by using push_back()



  9

Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system 
can handle

● That number can vary over time
– E.g. by using push_back()

● Example:

vector<double> age(4);

age[0]=.33;    

age[1]=22.0;    

age[2]=27.2;    age[3]=54.2;
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● A vector
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● Example:

vector<double> age(4);

age[0]=.33;    

age[1]=22.0;    

age[2]=27.2;    age[3]=54.2;
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0.33 22.0 27.2 54.2
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Vector

● A vector
– Can hold an arbitrary number of elements

● Up to whatever physical memory and the operating system 
can handle

● That number can vary over time
– E.g. by using push_back()

● Example:

vector<double> age(4);

age[0]=.33;    

age[1]=22.0;    

age[2]=27.2;    age[3]=54.2;

4

0.33 22.0 27.2 54.2

age:

From where does the vecor gets 
the space for its elements?
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The computer’s memory

● When we start a C++ program, 

the compiler sets aside memory for
– our code, called code storage/text storage/code, 
– local variables, including arguments in 

function calls, called stack
– global variables we define, called 

static storage / static data
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The free store

● The free store is sometimes called “the heap” 

and is used for dynamic memory 

allocation 



  14

The free store

● The free store is sometimes called “the heap” 

and is used for dynamic memory 

allocation 
● We request memory “to be allocated” “on the 

free store” by the new operator
– The new operator returns a pointer to the 

allocated memory
– A pointer is the address of the first byte of the 

memory
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The free store
● Example:

int* p = new int; // allocate one uninitialized  int          
                 // int* means “pointer to int”

int* q = new int[7]; // allocate seven uninitialized ints

                  // “an array of 7 ints”

double* pd = new double[n]; // allocate n uninitialized doubles
● A pointer points to an object of its specified type
● A pointer does not know how many elements it points to

p:

q:
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Access

● Individual elements

int* p1 = new int;      // get (allocate) a new uninitialized int 

int* p2 = new int(5); // get a new int initialized to 5

???

p1

5

p2
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Access

● Individual elements

int* p1 = new int;      // get (allocate) a new uninitialized int 

int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

                 // (or “get the contents of what p2 points to”)

          // in this case, the integer 5

int y = *p1; // what does it do?

???

p1

5

p2
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Access

● Individual elements

int* p1 = new int;      // get (allocate) a new uninitialized int 

int* p2 = new int(5); // get a new int initialized to 5

int x = *p2; // get/read the value pointed to by p2

                 // (or “get the contents of what p2 points to”)

                     // in this case, the integer 5

int y = *p1; // undefined: y gets an undefined value; don’t do that  

???

p1

5

p2
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Access

● Arrays (sequences of elements)

int* p3 = new int[5];     // get (allocate) 5 ints 

                           // array elements are numbered [0], [1], [2], …

7 9

p3
[0]  [1]  [2] [3] [4]
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Access

● Arrays (sequences of elements)

int* p3 = new int[5];     // get (allocate) 5 ints 

                           // array elements are numbered [0], [1], [2], …

p3[0] = 7; // write to (“set”) the 1st element  of p3

p3[1] = 9;

int x2 = p3[1];      // get the value of the 2nd  element of p3

int x3 = *p3; // use the dereference operator * for an array

                                           // *p3 means p3[0]  (and vice versa)

7 9

p3
[0]  [1]  [2] [3] [4]
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Why use free store?

● To allocate objects that have to outlive the function that creates 
them:
– For example

double* make(int n) // allocate n ints
{ 
   return new double[n];
}

- Another example: vector’s constructor
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Pointer values

● Pointer values are memory addresses
– Think of them as a kind of integer values
– The first byte of memory is 0, the next 1, and so on

7

// you can see a pointer value (but you rarely need/want to):
int* p1 = new int(7);  // allocate an int and initialize it to 7
double* p2 = new double(7); // allocate a double and initialize it to 7.0
cout << "p1==" << p1 << " *p1==" << *p1 << "\n";  // p1==??? *p1==c
cout << "p2==" << p2 << " *p2==" << *p2 << "\n";  // p2==??? *p2=7

p2 *p20 1 2
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

8.2
7.3

p1
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error

8.2
7.3

p1
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok

p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error

double* p2 = new double[100];
*p2 = 7.3; // ok
p2[17] = 9.4; // ok

8.2
7.3

7.3

p2

p1
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100]; p1

p2
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4;    // error (obviously)

p1

p2
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4;    // error (obviously)
p1 = p2;        // assign the value of p2 to p1

p1

p2

p1
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

double* p1 = new double;
double* p2 = new double[100];

p1[17] = 9.4;    // error (obviously)
p1 = p2;        // assign the value of p2 to p1

p1[17] = 9.4;      // now ok: p1 now points to the 
                   // array of 100 doubles

p1

p2

p1
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer  to one value 

type to a pointer to another value type
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer  to one value 

type to a pointer to another value type
● However, there are implicit conversions between value types:

*pc = 8;   // ok: we can assign an int to a char
*pc = *pi1;  // ok: we can assign an int to a char
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Access

● A pointer does not know the number of elements that it's 
pointing to (only the address of the first element)

int* pi1 = new int(7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1
double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*
● There are no implicit conversions between a pointer  to one value 

type to a pointer to another value type
● However, there are implicit conversions between value types:

*pc = 8;   // ok: we can assign an int to a char
*pc = *pi1;  // ok: we can assign an int to a char7

pi1

7

pc
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References
● “reference” is a general concept
int i = 7;

int& r = i;

r = 9; // i becomes 9

const int& cr = i;

// cr = 7; // error: cr refers to const
i = 8;

cout << cr << endl; // write out the value of i (that’s 8)
● You can think of a reference as an alternative name for an object (alias)
● You can’t modify an object through a const reference (recall passing 

parameters by reference)
● You can’t make a reference refer to another object after initialization
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For loop example with and without references

● Consider the following range-for loops:
for (string s : v) cout << s << \n ;″ ″
// s is a copy of some v[i]

for (string& s : v) cout << s << \n ;″ ″
// no copy

for (const string& s : v) cout << s << \n ;″ ″
// and we don’t modify v
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Pointers and references

● Think of a reference as an automatically dereferenced pointer
– Or as “an alternative name for an object”
– A reference must be initialized
– The value of a reference  cannot be changed after initialization
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Pointers and references

● Think of a reference as an automatically dereferenced pointer
– Or as “an alternative name for an object”
– A reference must be initialized
– The value of a reference  cannot be changed after initialization

int x = 7;

int y = 8;

int* p = &x; *p = 9;

p = &y; // ok

int& r = x; x = 10;

r = &y; // error (and so is all other attempts to change what r refers to)
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In-class practice

● Allocate an array of 100 floating point values on the free store using new. 
Initialize it with values 2*i+1, where I runs from 0 to 99. Display all the 
values using cout. Deallocate the array (using delete []) and 
announce that it was deallocated.

● Write a function displayArray(ostream& out, double *a, int 
n) that prints out the values of a, assuming that a has n elements, to 
out.

● Consider the following code and make a sketch of the memory for it:
int x = 7, y = 8;

int* p = &x; *p += 5;

int *p2 = new int;

*p2 = *p;

delete p2;
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Resources used for these slides

● slides provided by B. Stroustrup at 
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html
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