

Operator overloading
Class string

(part 1)

Chapter 10

Today we will

● Talk about operator overloading
● work with strings using overloaded operators
● define Date class

Operator Overloading

Recall a statement:

cout << “Hello, world!” ;

Object cout is an instance of class ostream, standard
output stream.

operator << is overloaded to work with such objects (as
stream insertion operator).

Also, operator << can be used for the bitwise left-shift.

Operator Overloading

Recall a statement:

cout << “Hello, world!” ;

Object cout is an instance of class ostream, standard
output stream.

operator << is overloaded to work with such objects (as
stream insertion operator).

Also, operator << can be used for the bitwise left-shift.

Similarly, operator >> is also overloaded, it can work as
- stream extraction operator (cin >> a;), and
- bitwise left-shift operator

Operator Overloading

See the work with strings in stringsWork.cpp

Operator Overloading

We can overload most operators to be used with class
objects, the compiler will generate the appropriate code
based on the types of the operands.

Of course we can use explicit function calls (recall
empty()), but operator notation is often more natural.

Let’s build class Date: each object of the class will be
representing a date (month-day-year). We will need the
following methods:
● display the date
● increment a date
● add a number of days to the date
● check if the year is a leap year
● … anything else that come during the development

Static members of a class

We discussed static variables:
they keep their values and are not destroyed when they go
out of scope.

Static members of a class

Static member variables are shared by all the instances of
the class, they do not belong to a particular object.
● we can access them through the class objects or through

the class name.
● since they are not part of the individual class objects (they

are treated similarly to global variables, and get initialized
when the program starts), we must explicitly define the
static member outside of the class, in the global scope.

● static member definition is not subject to access controls:
we can define and initialize the value even if it’s declared
as private (or protected) in the class.

● If the class is defined in a myClass.h file, the static member
definition is usually placed in the associated code file for
the class (e.g. myClass.cpp).

● If the class is defined in a .cpp file, the static member
definition is usually placed directly underneath the class.

Static members of a class

class myClass {

public:
myClass(int a = 10) : x{ a } { }
static int y; // static member variable

private:
int x;

};

int myClass::y{ 0 };

int main() {

myClass obj1{ 23 }, obj2;

obj1.y = 90;
obj2.y = -23;
cout << myClass::y << endl;

} see staticMembersOfClass.cpp

Static members of a class

Static member functions/methods are shared also by all the
instances of the class and do not belong to a particular
object.
● we can access them through the class objects or through

the class name directly (myClass::)

● since they are not part of the individual class objects, they
have no this pointer

● they can directly access other static members (variables or
functions), but

● they cannot access non-static members

see staticMembersOfClass_2.cpp

Operator Overloading

Let’s start working on the class Date: each object of the
class will be representing a date (month-day-year). We will
need the following methods:
● display the date
● increment a date
● add a number of days to the date
● check if the year is a leap year
● … anything else that come during the development

see file Date.h

It follows up with Date.cpp
- we haven’t finished working on it.

Increment/Decrement – Member/Non-Member

HW assignment

1) will be posted shortly

Suggested exercises
(not for grade, but the questions related to these will appear
on a quiz or a test):
1) Chapter 10, Summary and all Self-Review Exercises

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

