
  

Classes: A Deeper Look
(part 2)

Chapter 9



  

Today we will

Discuss
● return values of member functions
● copy assignment
● const objects and const Member Functions
● friend functions and friend classes
● this pointer



  

Complex numbers: returning a value

Consider the accessor method that returns real part:

double Complex::getRealPart() {

return realPart;
}



  

Complex numbers: returning a value

Consider the accessor method that returns real part:

double Complex::getRealPart() {

return realPart;
}

// returns reference to the real part
double& Complex::getRealPart2() { 

return realPart;
}

// returns reference to the real part
double* Complex::getRealPart3() { 

return &realPart;
}
See complex.h, complex.cpp, usingComplexClass.cpp 



  

Complex numbers: returning a value

Consider the accessor method that returns real part:

double Complex::getRealPart() {

return realPart;
}

The encapsulation of class was broken by the methods 
getRealPart2() and getRealPart3() : they give 
unrestricted and uncontrolled access to internal 
representation of the complex number (realPart in particular).



  

Complex numbers: returning a value

Consider the accessor method that returns real part:

double Complex::getRealPart() {

return realPart;
}

The encapsulation of class was broken by the methods 
getRealPart2() and getRealPart3() : they give 
unrestricted and uncontrolled access to internal 
representation of the complex number (realPart in particular).

Encapsulation is when we keep the implementation details of 
our classes private to protect them from direct use that could 
complicate maintenance.
(from Programming Principles and Practice Using C++, by 
Bjarne Stroustrup) – one of many definitions



  

Complex numbers: returning a value

Consider the accessor method that returns real part:

double Complex::getRealPart() {

return realPart;
}

The encapsulation of class was broken by the methods 
getRealPart2() and getRealPart3() : they give 
unrestricted and uncontrolled access to internal 
representation of the complex number (realPart in particular).

Encapsulation is a process of packaging some data along 
with the set of operations that can be performed on the data.
(from Data Structures and Algorithms Using Python and 
C++, by David M. Reed and John Zelle) – one of many 
definitions



  

Default Memberwise Assignment 
(Copy Assignment)

Consider the following code fragment:

Complex d(-3, -4), a(1);

a = d;

cout << a.toString() << endl;
cout << d.toString() << endl;

cout << "modifying a ...\n";

a.setRealPart(-8);
a.setImPart(-9);

cout << a.toString() << endl;
cout << d.toString() << endl;



  

Default Memberwise Assignment 
(Copy Assignment)

Consider the following code fragment:

Complex d(-3, -4), a(1);

a = d;

cout << a.toString() << endl;
cout << d.toString() << endl;

cout << "modifying a ...\n";

a.setRealPart(-8);
a.setImPart(-9);

cout << a.toString() << endl;
cout << d.toString() << endl;

each data member of d is assigned individually 
to the same data member in the object a

See complex.h, complex.cpp, dma.cpp 



  

Default Memberwise Assignment 
(Copy Assignment)

We can pass an object to a function as an argument or 
return an object from a function.

In such case, by default, pass-by-value is used, i.e. a copy of 
the object is passed/returned.

See complex.h, complex.cpp, dma.cpp 



  

const Objects and const Member Functions

The statement

const Complex a(2,5);

declares a constant object a of type Complex, and initializes 
it to 2+5i.



  

const Objects and const Member Functions

The statement

const Complex a(2,5);

declares a constant object a of type Complex, and initializes 
it to 2+5i.

Function    double getRealPart()  can be converted to 
constant method: double getRealPart() const;
which will prohibit/prevent it from modifying the data 
attributes of class Complex.

 



  

const Objects and const Member Functions

The statement

const Complex a(2,5);

declares a constant object a of type Complex, and initializes 
it to 2+5i.

Function    double getRealPart()  can be converted to 
constant method: double getRealPart() const;
which will prohibit/prevent it from modifying the data 
attributes of class Complex.

A constructor must be a non-constant member function.

See complex2.h, complex2.cpp, constOandMF.cpp 



  

Objects as Members of Classes

Consider a set of complex numbers …
We can find intersection, union, difference … of sets.

If we decide to define a class Set, we might consider objects 
of type Complex to be its members.

In this case we observe has-a relationship: 
a class can have objects of other class as members



  

friend Functions and friend Classes

A friend function of a class is a non-member function that 
has the right to access the public and non-public class 
members.

Standalone functions, entire classes or member functions of 
other classes may be declared to be friends of another class.



  

friend Functions and friend Classes

A friend function of a class is a non-member function that 
has the right to access the public and non-public class 
members.

Standalone functions, entire classes or member functions of 
other classes may be declared to be friends of another class.

In the next chapters we will be using it to overload certain 
operators, like displaying on the screen.

Recall our complex number class: wouldn’t it be easier to 
just cout an object?  cout << a;

See a silly example of friend function declaration in 
friendFunction.cpp 



  

Using this Pointer

As we know there may be many objects of the same 
class/type. 
How do member functions know which object to manipulate?



  

Using this Pointer

As we know there may be many objects of the same 
class/type. 
How do member functions know which object to manipulate?
- every object has access to its own address through the 
pointer called this.



  

Using this Pointer

As we know there may be many objects of the same 
class/type. 
How do member functions know which object to manipulate?
- every object has access to its own address through the 
pointer called this.

this is not a part of the object itself, so the sizeof 
operation will not reflect it in the result.

this pointer is passed by the compiler as an implicit 
parameter/argument to each of the object’s non-static 
member functions. 



  

Using this Pointer

We can use this pointer to avoid naming conflicts, for 
example:

void Complex::setImPart(double imaginaryPart) { 

this->imaginaryPart = imaginaryPart;
}



  

Using this Pointer

We can use this pointer to avoid naming conflicts, for 
example:

void Complex::setImPart(double imaginaryPart) { 

this->imaginaryPart = imaginaryPart;
}

The type of the this pointer depends on the type of the 
object and whether the member function in which this is used 
is declared const:
● in a non-const member function, the this pointer has the 

type Complex* const -  a constant pointer to a non-constant 
object

● in a const member function, this has the type const 
Complex* const – a constant pointer to a constant object



  

HW assignment

1) Exercise 9.23 – from previous class meeting

Suggested exercises
(not for grade, but the questions related to these will appear 
on a quiz or a test):
1) Chapter 9, Summary and all Self-Review Exercises
2) Chapter 9, Exercise: 9.16



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

