
Chapter 10: Input and Output Streams

 2

Plan for today

● We will talk about:
– The I/O stream model
– Files:

● Opening a file
● Reading and writing a file

– I/O error handling
–

 3

Input and Output

input device device driver input library

our program

output library device driver output device

data source:

data destination:

data source:

Most modern operating
systems separate the detailed
handling of I/O devices into
device drivers; Programs then
access the device drivers
through an I/O library that
makes I/O from/to different
sources appear as similar as
possible.

 4

Input and Output

input device device driver input library

our program

output library device driver output device

data source:

data destination:

data source:

Given a model like this:
Input and output can be
seen as streams of bytes
(characters) handled by the
input/output library

 5

The output stream model

c

(1,234)

123

ostream

buffer

“somewhere”
“somewhere”

An ostream:
● turns values of various types into character sequences
● sends those characters “somewhere” (console, file, main memory,

another computer, etc.)

 6

The output stream model

c

(1,234)

123

ostream

buffer

“somewhere”
“somewhere”

Buffer is a data structure that the ostream uses internally to store the
data we give it while communicating with the operating system.
It is important for performance. Sometimes we may notice a delay between
our writing to an ostream and the characters appearing at their destination.

 7

The input stream model

“somewhere”

An istream:
● turns character sequences into values of various types
● gets those characters from “somewhere” (console, file, main memory,

another computer, etc.)

c

(1,234)

123

istream

buffer

 8

The input stream model

“somewhere”

With an istream, the buffering can be quite visible.
Example: when the user types on a keyboard, until they press Enter, they
can modify the entered text.

c

(1,234)

123

istream

buffer

 9

The stream model

● Reading and writing
– Of typed entities

● << (output) and >> (input) plus other operations
● Type safe
● Formatted

● Typically stored (entered, printed, etc.) as text
– But not necessarily (see binary streams in chapter 11)

● Extensible
– You can define your own I/O operations for your own types

● A stream can be attached to any I/O or storage device

 10

Files
● A file is a sequence of bytes stored in permanent storage

– A file has a name
– The data on a file has a format

● We can read/write a file if we know its name and format0: 1: 2:

0: 1: 2:

At the fundamental level, a file is a sequence of bytes
numbered from 0 upwards.

 11

Files
● General model

disk I/O system Main memory

Files
(sequences of bytes)

iostreams
Files
(sequences of bytes)

iostreams Objects
(of various types)

For a file:
● An ostream converts objects in main memory into streams of bytes

and writes them to disk
● An istream does the opposite: it takes a stream of bytes from disk

and composes objects from them

 12

Files
● To read a file:

– We must know its name
– We must open it (for reading)
– Then we can read
– Then we must close it (typically done implicitly)

● To write a file:
– We must name it
– We must open it (for writing) or create a new file of that name
– Then we can write it
– We must close it (typically done implicitly)

 13

Opening a file for reading
// …

int main()

{

cout << "Please enter input file name: ";

string iname;

cin >> iname;

ifstream ist {iname}; // an “input stream from a file”

 // defining an ifstream with a name string

 // opens the file of that name for reading
if (!ist) error("can’t open input file ", iname);

// …

 14

Opening a file for writing
// …

cout << "Please enter name of output file: ";

string oname;

cin >> oname;

ofstream ofs {oname}; // an “output stream from a file”

 // defining an ofstream with a name string

 // opens the file with that name for writing
if (!ofs) error("can’t open output file ", oname);

// …

}

 15

Example
● Assume we have a file that contains a sequence of pairs

representin hours and temperature readings
● The hours are numbered 0 … 23
● No further format is assumed
● Termination is upon reaching the end of the file, or anything

unexpected is read.

0 60.7

1 60.6

2 60.3

3 59.22 see program temperatureReadings.cpp

 16

In-class practice (exercise 9)
● Write a program that takes two files containing sorted

whitespace-separated words and merges them into one file,
preserving the sorted order.

 17

I/O error handling
● Sources of errors

– Human mistakes
– Files that fail to meet specifications
– Specifications that fail to match reality
– Programmer errors, etc.

● iostream reduces all errors to one of four states
– good() // the operation succeeded
– eof() // we hit the end of input (“end of file”)
– fail() // something unexpected happened
– bad() // something unexpected and serious happened

 18

Sample integer read “failure”

● Ended by “terminator character”
– 1 2 3 4 5 *
– State is fail()

● Ended by format error
– 1 2 3 4 5.6
– State is fail()

● Ended by “end of file”
– 1 2 3 4 5 end of file
– 1 2 3 4 5 Control-Z (Windows)
– 1 2 3 4 5 Control-D (Unix)
– State is eof()

● Something really bad
– Disk format error
– State is bad()

 19

I/O error handling
void fill_vector(istream& ist, vector<int>& v, char terminator)

{ // read integers from ist into v until we reach eof() or terminator

for (int i; ist >> i;) // read until “some failure”

 v.push_back(i); // store in v

if (ist.eof()) return; // fine: we found the end of file

if (ist.bad()) error("ist is bad"); // stream corrupted; get out of here

if (ist.fail()) { // clean up the mess as best we can and report the problem

 ist.clear(); // clear stream state, so that we can look for terminator
 char c;

 ist >> c; // read a character, hopefully terminator

 if (c != terminator) { // unexpected character

 ist.unget(); // put that character back

 ist.clear(ios_base::failbit); // set the state back to fail()
 } } } Sequence of integers: 4 2 9 8 1 7 *

 20

Throw an exception for bad()

// How to make ist throw if it goes bad:
ist.exceptions(ist.exceptions()|ios_base::badbit);

// can be read as

// “set ist’s exception mask to whatever it was plus badbit”

// or as “throw an exception if the stream goes bad”

Given that, we can simplify our input loops by no
longer checking for bad

Sequence of integers: 4 2 9 8 1 7 *

 21

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

