

Classes: A Deeper Look

Chapter 9

Today we will

Define and use class Complex, representing complex
numbers in rectangular form: a + bi.

While working on it, we will discuss the following terminology:
● interface and implementation
● include guards in header files
● throwing exceptions

After we finished working with it, we will see how we can
access public class methods through
● objects,
● references and
● pointers.

Complex numbers (rectangular form)

a + bi

To-do list:
● use double variables to represent the private data of the

class
● provide constructor that enables an object of this class to be

initialized when it’s declared
● the constructor should contain default values in case no

initializers are provided
● provide public member functions that perform the

following tasks:
● add: adds two complex numbers
● subtract: subtracts the two complex numbers
● toString: returns a string representing the complex number

real part imaginary part

imaginary unit

i2=−1

Complex numbers (rectangular form)

How about multiplication and division of complex numbers?

Also, don’t forget that division by 0 is undefined!

See complexNumber.h, complexNumber.cpp, and
testingComplexNumber.cpp

(a+bi)(c+di)=…=(ac−bd)+(ad+bc)i

a+bi
c+di

=
(a+bi)(c−di)
(c+di)(c−di)

=…=
(ac+bd)+(bc−ad)i

c2+d2
=

=ac+bd
c2+d2

+ bc−ad
c2+d2

i

Complex numbers (rectangular form)

Next, let’s see how we can access public class methods
through objects, references and pointers.

See complexNumber.h, complexNumber.cpp, and
testingComplexNumber2.cpp

Constructors and Destructors

We already know that constructor is called when an object is
created.

Similarly, the destructor is called when an object’s lifetime
ends:
● program is terminated, or
● end-of-scope is reached, or
● explicit delete statement is called, …

Destructor does not release the object’s memory (it is done by
other entity), it preforms termination housekeeping: closes
opened files, releases dynamically allocated memory, etc.

Constructors and Destructors for Objects in Global Scope

Constructors are called for objects defined in global scope
(global namespace scope) before any other function
(including main) begins execution.

The corresponding destructors are called when main
terminates.

Function exit() forces the program to terminate immediately
and does not execute the destructors of local objects. exit()
is often used when a fatal unrecoverable error occurs.

Function abort() performs similarly to exit() but forces
the program to terminate immediately, without allowing
programmer-defined clean up code of any kind to be called.
abort() is usually used to indicate an abnormal termination.

Appendix F has more information on exit() and abort()

Constructors and Destructors for Non-static Local Objects

The constructor for a non-static local object is called when
execution reaches the point where that object is defined.

The corresponding destructor is called when the execution
leaves the object’s scope.

Constructors and destructors of non-static local objects are
called each time execution enters and leaves the scope of the
object

Exception: when exit() or abort()functions are called, the
destructors are not called.

Constructors and Destructors for static Local Objects

The constructor for a static local object is called only once,
when execution reaches the point where that object is defined
first time.

The corresponding destructor is called when main terminates
or the program calls function exit().

Global and static objects are destroyed in the reverse order of
their creation.

Destructors are not called for static objects if the program
terminates with a call to function abort().

Constructors and Destructors

Let’s take a look at an example that demonstrates the order in
which constructors and destructors are called for global, local
and local static objects. We will use the following class:

class CreateAndDestroy {

public:
CreateAndDestroy(int id, std::string msg) :
 ObjectID(id),message(msg) {

cout << "Object " << ObjectID << "
constructor runs \t" << message << endl;

}

~CreateAndDestroy() {
cout << "Object " << ObjectID << " destructor

runs \t" << message << endl; }

private:
int ObjectID; // id of the object
std::string message; // describes the object };

HW assignment

1) Exercise 9.23

Self Study
Read Section 9.6.2 and then do exercise 9.17

Suggested exercises
(not for grade, but the questions related to these will appear
on a quiz or a test):
1) Chapter 9, Summary and all Self-Review Exercises
2) Chapter 9, Exercise: 9.3, 9.14

This work is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

