
  

Pointers
(continues)

Chapter 8



  

Today we will discuss:

● Passing pointers as parameters to functions



  

Precedence and associativity of some operators

postfix ++ and – – : left to right
prefix (unary) – –  , ++, and *  : right to left

Example:

int a[5] = {1,3,8,5,11};
int * ptr = a;

*ptr+1
*(ptr+1)
*++ptr
*ptr++

See operationsPrecedence.cpp

higher

lowe

1

3

8

5

11

2

6

10

14

18

2a

prt 2



  

Passing pointers as parameters

There are three ways in C++ to pass arguments to functions:

● pass-by-value

● pass-by-reference with a reference argument

● pass-by-reference with a pointer argument



  

Passing pointers as parameters

There are three ways in C++ to pass arguments to functions:

● pass-by-value

● pass-by-reference with a reference argument

● pass-by-reference with a pointer argument

int add(int a, int b) { return a + b; }

int main() {

int x = 10, y = 12;

cout << add(x, y) << endl;



  

Passing pointers as parameters

There are three ways in C++ to pass arguments to functions:

● pass-by-value

● pass-by-reference with a reference argument

● pass-by-reference with a pointer argument

int add_r(int& a, int& b) { return a + b; }

int main() {

int x = 10, y = 12;

cout << add_r(x, y) << endl;



  

Passing pointers as parameters

There are three ways in C++ to pass arguments to functions:

● pass-by-value

● pass-by-reference with a reference argument

● pass-by-reference with a pointer argument

int add_p(int* a, int* b) { return *a + *b; }

int main() {

int x = 10, y = 12;

cout << add_p(&x, &y) << endl;

Note: pointers are passed by value



  

Passing pointers as parameters

int add(int a, int b) { return a + b; }

int add_r(int& a, int& b) { return a + b; }

int add_p(int* a, int* b) { return *a + *b; }

int main() {

int x = 10, y = 12;

cout << add(x, y) << endl;
cout << add_r(x, y) << endl;
cout << add_p(&x, &y) << endl;

}

  see passingByReference.cpp



  

What can go wrong when passing by reference?

When we pass parameters by reference, with reference or 
with a pointer as arguments, we give direct access to the 
original/outside variable memory location. 

Therefore, we we modify the value at that memory location, 
the change will be affecting the original/outside variable. 
It is often called a side effect.



  

What can go wrong when passing by reference?

When we pass parameters by reference, with reference or 
with a pointer as arguments, we give direct access to the 
original/outside variable memory location. 

Therefore, we we modify the value at that memory location, 
the change will be affecting the original/outside variable. 
It is often called a side effect.

int add_r(int& a, int& b) {
a = 5; 
return a + b; }

int main() {

int x = 10, y = 12;

cout << add_r(x, y) << endl;



  

What can go wrong when passing by reference?

When we pass parameters by reference, with reference or 
with a pointer as arguments, we give direct access to the 
original/outside variable memory location. 

Therefore, we we modify the value at that memory location, 
the change will be affecting the original/outside variable. 
It is often called a side effect.

int add_p(int* a, int* b) { 
*a = 6;
return *a + *b; }

int main() {

int x = 10, y = 12;

cout << add_p(&x, &y) << endl;



  

Why do we need to passing by reference?

● to reduce the overhead time and space used for the copy of 
the value

● to overcome the limitation of “a C++ function can return 
only one value” 



  

Why do we need to passing by reference?

● to reduce the overhead time and space used for the copy of 
the value

If we do not want the original values be modified:

int mult_r(const int& a, const int& b);

● to overcome the limitation of “a C++ function can return 
only one value” 



  

Why do we need to passing by reference?

● to reduce the overhead time and space used for the copy of 
the value

If we do not want the original values be modified:

int mult_r(const int& a, const int& b); 
int mult_p(const int* a, const int* b);
  - nonconstant pointer (it can be modified) to constant data 
(a’s and b’s “parent” values cannot be modified)

● to overcome the limitation of “a C++ function can return 
only one value” 



  

Why do we need to passing by reference?

● to reduce the overhead time and space used for the copy of 
the value

If we do not want the original values be modified:

int mult_r(const int& a, const int& b); 
int mult_p(const int* a, const int* b);
  - nonconstant pointer (it can be modified) to constant data 
(a’s and b’s “parent” values cannot be modified)

● to overcome the limitation of “a C++ function can return 
only one value” 

double stats(int* min, int* max, 
const int& a, const int& b, const int& c)

    see passingByReference2.cpp



  

Passing pointer to a function

There are four ways to pass a pointer to a function:

● a non-constant pointer to non-constant data
● data can be modified through the dereferenced pointer, 

and
● pointer can be modified to point to other data

● a non-constant pointer to constant data
● pointer can be modified to point to other data, but
● data cannot be modified through the pointer

● a constant pointer to constant data
● pointer always points to the same location, and
● data at that location cannot be modified via the pointer

● a constant pointer to non-constant data
● pointer always points to the same location, but
● data at that location can be modified through the pointer



  

Passing pointer to a function

There are four ways to pass a pointer to a function:

● a non-constant pointer to non-constant data
● data can be modified through the dereferenced pointer, 

and
● pointer can be modified to point to other data

● a non-constant pointer to constant data
● pointer can be modified to point to other data, but
● data cannot be modified through the pointer

● a constant pointer to constant data
● pointer always points to the same location, and
● data at that location cannot be modified via the pointer

● a constant pointer to non-constant data
● pointer always points to the same location, but
● data at that location can be modified through the pointer

passingByReference2.cpp

passingByReference3.cpp

passingByReference3.cpp



  

sizeof() operator

sizeof() is a compile time unary operator that determines 
the size of any data type, variable, or constant in bytes.



  

sizeof() operator

sizeof() is a compile time unary operator that determines 
the size of any data type, variable, or constant in bytes.

consider the following code fragment: 

char myCharArray[] = { 'a','b','c','d' };
int myIntArray[] = { 12, 16, 13, 18, 21, 
23 };
double myDoubleArray[] = { 1.2, 0.16, -13, -
1.8, 2.1, -2.3, 0.9, 12.89, -9.8 };

sizeof(myCharArray) 
sizeof(myCharArray) / sizeof(myCharArray[0]) 

sizeof(myIntArray) 
sizeof(myIntArray) / sizeof(myIntArray[0]) 
...



  

Pointer assignment

A pointer can be assigned to another pointer if both pointers 
are of the same type.

A cast operator (will be discussed in Section 14.8) can be 
used to convert the value of the pointer on the right of the 
assignment to the pointer type on the left of the assignment.

Pointer to void ( void*) is a generic pointer capable of 
representing any pointer type.

Any pointer to a fundamental type or class type can be 
assigned to a pointer of type void* without casting, but not 
vice versa.

A void* pointer cannot be dereferenced, because the 
compiler does not know the type of the data the pointer refers 
to (i.e. the number of bytes is unknown).



  

HW assignment

1) posted on our web-site, from previous lecture
2) Exercise 8.12, see the draft posted on our web-site.

Suggested exercises
(not for grade, but the questions related to these will appear 
on a quiz or a test):
1) Chapter 8, 
    Summary and all Self-Review Exercises
2) Chapter 8, Exercise: 8.13, 8.14



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

