
Chapter 9: Technicalities: Classes, etc.

 2

Plan for today

● We will talk about:
– User-defined types
– Classes and members
– Interface and implementation
– struct

 3

Classes
● The idea:

– A class directly represents a concept in a program
● If you can think of “it” as a separate entity, it is likely that you

should define a class to represent “it” in your program
● Examples: vector, matrix, input stream, string, valve

controller, robot arm, device driver, picture on screen, dialog
box, graph, window, temperature reading, clock

– A class is a (user-defined) type that specifies how objects of its
type are represented, how they can be created, used, and
destroyed.

– In C++ (as in most modern languages), a class is the key
building block for large programs

 4

Members and member access
● One way of looking at a class;
 class X { // this class’ name is X

 // data members

 // (they store information,

 //represent the current state)

 // function members

 // (they do things, using the information,

 // a set of operations that can be applied)

 };

 5

Members and member access
● Example:
 class X {

 public:

 int m; // data member

 int mf(int v) { int old = m; m=v; return old; }
 // function member

 };

 X var; // var is a variable of type X

 var.m = 7; // access var’s data member m

 int x = var.mf(9); // call var’s member function

 6

Interface and Implementation
● We usually thing of class as having an interface plus an

implementation
● The interface is the part of the class’s declaration that its users

access directly
– identified by the label public
– user’s view of the class

● The implementation is that part of the class’s declaration that its
users access only indirectly through the interface
– identified by the label private
– implementer’s view of the class

 7

Interface and Implementation
● We usually thing of class as having an interface plus an implementation
● Example:
class X { // this class’ name is X

public: // public members -- that’s the interface to users

// (accessible by all)

// functions

// types

// data (often best kept private)

private: // private members -- that’s the implementation details

 // (accessible by members of this class only)

// functions

// types

// data

};

 8

Interface and Implementation
class Date { // this class’ name is X

 int y, m, d; // class members are private by default

public:

 Date(int y, int m, int d);

 void addDay(int n); // increase the date by n days

 int month() { return m;}

 int day() { return d;} int year() { return y;}

};

 9

Interface and Implementation
class Date { // this class’ name is X

 int y, m, d; // class members are private by default

public:

 Date(int y, int m, int d);

 void addDay(int n); // increase the date by n days

 int month() { return m;}

 int day() { return d;} int year() { return y;}

};

● We can use it like this:
Date today(2023,3,2); // OK

today.m = 4; // error: Date::m is private

cout << today.month() << endl; // OK

 10

Interface and Implementation
class Date { // this class’ name is X

 int y, m, d; // class members are private by default

public:

 Date(int y, int m, int d);

 void addDay(int n); // increase the date by n days

 int month() { return m;}

 int day() { return d;} int year() { return y;}

};

● A date should be “valid”. We try to design our types so that the values are
guaranteed to be valid; we hide the representation, provide a constructor
that creates only valid objects, and design all member functions to expect
valid values and leave only valid values behind when they return.

 11

Interface and Implementation
● The value of an object is often called its state, so
● The idea of a valid value is often refereed to as a valid state of an

object

 12

Interface and Implementation
● The value of an object is often called its state, so
● The idea of a valid value is often refereed to as a valid state of an

object
● A rule for what constitutes a valid value is called an “invariant”

– The invariant for Date (“a Date must represent a date in the
past, present, or future”) is unusually hard to state precisely

● Remember February 28 (leap years), time zones, etc.

 13

Interface and Implementation
● The value of an object is often called its state, so
● The idea of a valid value is often refereed to as a valid state of an

object
● A rule for what constitutes a valid value is called an “invariant”

– The invariant for Date (“a Date must represent a date in the
past, present, or future”) is unusually hard to state precisely

● Remember February 28 (leap years), time zones, etc.
● If we can’t think of a good invariant, we are probably dealing with

plain data
– If so, use a struct

 14

Defining member functions and reporting errors

● Grab the file Date.h

 (we will continue working on it)

 15

Struct and Class
● There is a useful simplified notation for a class that has no private

implementation details:
– A struct is a class where members are public by default

 struct X {

 int m;

 // …

 };

– structts are primarily used for data structures where the members can take
any value

- Means
 class X {
 public:
 int m;
 // …
 };

 16

In-class work

● Design and implement NamePairs class hloding (name,age) pairs
where name is a string and age is a double.

● Represent that as a vector<string> (called name) and a
vector<double> (called age) members.

● Provide an input operator called readNames() that reads a series of
names.

● Provide an input operator called readAges() that prompts the user for
an age for each name.

● Provide a print() operation that prints out the (name[i], age[i])
pairs (one per line) in the order determined by the name vector.

 17

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

