
Chapter 8: Technicalities: Functions, etc.
(continues)

 2

Plan for today

● We will talk about:
– Function call implementation
– Compile time functions
– Namespaces

 3

Function call implementation
● How does a computer do a function call?

 4

Function call implementation
● How does a computer do a function call?
● When a function is called, the language implementation sets aside

a data structure containing a copy of all its parameters and local
variables

 5

Function call implementation
● How does a computer do a function call?
● When a function is called, the language implementation sets aside

a data structure containing a copy of all its parameters and local
variables

● Such a data structure is called a function activation record

 6

Function call implementation
● How does a computer do a function call?
● When a function is called, the language implementation sets aside

a data structure containing a copy of all its parameters and local
variables

● Such a data structure is called a function activation record
● Each function has its own detailed layout of its activation record

 7

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

 8

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call stack

 9

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

x, y

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call of f2():

call stack

 10

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

x, y

Implementation stuff

x

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call of f2():

call of f1():

call stack

 11

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

x, y

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call of f2():

call stack

 12

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

x, y

Implementation stuff

x

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call of f2():

call of f3():

call stack

 13

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

x, y

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call of f2():

call stack

 14

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call stack

 15

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

a,b,r,f

Implementation stuff

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call of main():

call stack

 16

Function call implementation: example
int main() {

int a{ 3 }, b{ -5 }, r;

r = f2(a, b);

cout << "result r = " << r;

}

int f1(int x) {

return x * x;

}

int f2(int x, int y) {

return f1(x) + f3(y);

}

int f3(int x) {

return x * x * x;

}

Implementation stuff has
information that the function
needs to return to its caller and
to return a value to its caller.

call stack

 17

constexpr functions
● Sometimes we want to do a calculation at compile time

– usually to avoid having the same calculation done many many
times at run time

● By declaring the function constexpr, and providing constant
expressions as argument, we convey our intent to the compiler

● In addition, a constexpr function may not have side effects, i.e.
may not change the value of variables outside its own body

● Should return a value (starting from C++ 11)
● May have a simple loop (starting from C++ 14)
● Compiler can evaluate such a function at compile time

 18

constexpr functions
constexpr double xscale = 10; // scaling factor

constexpr double yscale = .8; // scaling factor

constexpr Point scale(Point p) {

 return { xscale*p.x, yscale*p.y }; }

constexpr Point x = scale({123,456}); // evaluated at compile time

void use(Point p)

{

 constexpr Point x1 = scale(p); // error: compile-time

 // evaluation requested for variable argument

Point x2 = scale(p); // OK: run-time evaluation

}

refer to program CompileTimeExamples.cpp for more details

 19

constexpr functions

double x = 10; // global variable

constexpr void func(int &arg) // no return value

{

 ++arg; // error: modifies caller via argument

 x = 2.7; // error: modifies nonlocal variable

}

- this is an example of a function that violates rules for simplicity.

 20

Global initialization
● Global variables in a single translation unit are initialized in the

order in which they appear
● Using a global variable is usually not a good idea

– no really effective way of knowing which parts of a large
program reads/writes global variable

– the order of initialization of global variables in different
translation units is not defined

 21

Global initialization
● Global variables in a single translation unit are initialized in the

order in which they appear
● Using a global variable is usually not a good idea

– no really effective way of knowing which parts of a large
program reads/writes global variable

– the order of initialization of global variables in different
translation units is not defined

In file f1.cpp: in file f2.cpp:

int x1 = 1; extern y1;

int y1 = x1 + 2; int y2 = y1 + 2;

 22

Global initialization
● Global variables in a single translation unit are initialized in the

order in which they appear
● Using a global variable is usually not a good idea

– no really effective way of knowing which parts of a large
program reads/writes global variable

– the order of initialization of global variables in different
translation units is not defined

In file f1.cpp: in file f2.cpp:

int x1 = 1; extern y1;

int y1 = x1 + 2; int y2 = y1 + 2;

 avoid using short names and complicated initialization.

 23

Global initialization: real need
● What to do if we really need a global variable (or a constant) with a

complicated initializer?
● An example: a default value for a Date type

const Date default_date(1970,1,1); // Jan. 1St, 1970

 How would we know that default_date was never used before it
was initialized?

Basically, we can’t know, so we shouldn’t write that definition.

 24

Global initialization: real need
● The technique that we use most oftern is to call a function that

returns a value
● An example: a default value for a Date type

const Date default_date() // return Jan. 1St, 1970

{

 return Date(1970,1,1);

}

This constructs the Date every time we call default_date().

If it is called frequently, then it becomes expensive. In this case, if we
want the construct the default Date only once, we can use static
variable.

 25

Global initialization: real need
● Using static variable to have only one Date object for default value:

const Date& default_date() // return Jan. 1St, 1970

{

 static const Date dd(1970,1,1); // initialize

 // dd first time we get here

 return dd;

}

 26

Namespaces
● We use blocks to organize code within a function
● We use classes to organize functions, data and types into a type
● A function and a class both do two things for us:

– they allow us to define a number of ”entities” without worrying
that their names clash with other names in our program

– they give us a name to refer to what we have defined
● We need something to organize classes, functions, data and types

into an identifiable and named part of a program without defining a
type
– The language mechanism for such grouping is a namespace.

 27

Namespaces
Consider this code from two programmers Jack and Jill:

class Glob { /*…*/ }; // in Jack’s header file jack.h

class Widget { /*…*/ }; // also in jack.h

class Blob { /*…*/ }; // in Jill’s header file jill.h

class Widget { /*…*/ }; // also in jill.h

#include "jack.h"; // this is in your code

#include "jill.h"; // so is this

void my_func(Widget p) //oops! error: multiple definitions of
Widget

{

 // …

}

 28

Namespaces
● The compiler will not compile multiple definitions; such clashes can occur from multiple

headers.
● One way to prevent this problem is with namespaces:

namespace Jack { // in Jack’s header file

 class Glob{ /*…*/ };

 class Widget{ /*…*/ };

 }

 #include "jack.h"; // this is in your code

#include "jill.h"; // so is this

void my_func(Jack::Widget p) // OK, Jack’s Widget class will not

{ // clash with a different Widget

 // …

}

 29

Namespaces
● A namespace is a named scope
● The :: syntax is used to specify which namespace you are using

and which (of many possible) objects of the same name you are
referring to – often called “scope resolution”

● For example, cout is in namespace std, you could write:

std::cout << "Please enter stuff… \n";

 30

using Declarations and Directives
● To avoid the tedium of

– std::cout << "Please enter stuff… \n";

you could write a “using declaration”
– using std::cout; // when I say cout, I mean std::cout
– cout << "Please enter stuff… \n"; // ok: std::cout
– cin >> x; // error: cin not in scope

● or you could write a “using directive”
– using namespace std; // “make all names from namespace std

available”
– cout << "Please enter stuff… \n"; // ok: std::cout
– cin >> x; // ok: std::cin

● More about header files in chapter 12

 31

In-class work
● Let’s get back to that in-class work from the previous meeting:

grab the suggested code for the statistics program and incorporate
a few suggestions into it:
– We want to keep sorting, finding minimum, maximum, mean and

median as one function, but we want to be able to return the
smallest, the largest, the mean and the median back to the
caller. What can we do?

– We would also like to make “input” as a separate function.

 32

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

