
Chapter 8: Technicalities: Functions, etc.
(continues)

 2

Plan for today

● We will talk about:
– Declarations and definitions
– More about scope
– Passing arguments by value
– Passing argumetns by const reference
– Passing arguments by reference

 3

Declarations and definitions

● Recall from our previous lecture on functions that
– A declaration is a statement that introduces a name into a scope

● specifying a type for what is named (e.g. a variable or a function)
● optionally, specifying an initializer (e.g. initializer value, or a function body)

– A declaration that also fully specifies the entity declared is called a
definition

– Every definition (by definition) is also a declaration.

 4

Declarations and definitions

● For a variable, a declaration supplies the type, but only definition
supplies the object (memory)

● For a function, a declaration provides the type (arguments +
return type), but only the definition provides the function body
(executable statements)
– Note that function bodies are store in memory as a part of the

program, so it is fair to say that function and variable
definitions consume memory, whereas declarations do not.

 5

Declarations and definitions: examples
● A declaration that (also) fully specifies the entity declared is called a definition

– Examples
 int a = 7;

 int b; // an (uninitialized) int

 vector<double> v; // an empty vector of doubles

 double sqrt(double) { … }; // a function with a body

 struct Point { int x; int y; };

– Examples of declarations that are not definitions:

 double sqrt(double); // function body missing

 struct Point; // class members specified elsewhere

 extern int a; // extern means “not definition”

 // “extern” is archaic; we will hardly use it

 6

Why both declarations and definitions?

● To refer to something, we need (only) its declaration
● Often we want the definition “elsewhere”

– Later in a file
– In another file

● preferably written by someone else
● Declarations are used to specify interfaces

– To your own code
– To libraries

● Libraries are key: we can’t write all ourselves, and wouldn’t want to
● In larger programs

– Place all declarations in header files to ease sharing

 7

Kinds of declarations
● The most interesting are

– Variables
● int x;
● vector<int> vi2 {1,2,3,4};

– Constants
● void f(const X&);
● constexpr int i{2};

– Functions
● double sqrt(double d) { /* … */ }

● Namespaces (will talk about later today)
● Types (classes and enumerations; see Chapter 9)
● Templates (see Chapter 19)

 8

Header Files and the Preprocessor
● A header is a file that holds declarations of functions, types,

constants, and other program components.
● #include "std_lib_facilities.h"

 is a “preprocessor directive” that adds declarations to our program
– Typically, the header file is simply a text (source code) file

 9

Header Files and the Preprocessor
● A header is a file that holds declarations of functions, types,

constants, and other program components.
● #include "std_lib_facilities.h"

 is a “preprocessor directive” that adds declarations to our program
– Typically, the header file is simply a text (source code) file

● A header gives us access to functions, types, etc. that we want to
use in our programs.
– Usually, we don’t really care about how they are written.
– The actual functions, types, etc. are defined in other source

code files
● Often as part of libraries

 10

Scope
● A scope is a region of program text

– Global scope (outside any language construct)
– Class scope (within a class)
– Local scope (between { … } braces)
– Statement scope (e.g. in a for-statement)

● A name in a scope can be seen from within its scope and within
scopes nested within that scope
– Only after the declaration of the name (“can’t look ahead” rule)
– Class members can be used within the class before they are

declared

 11

Scope
● A scope keeps “things” local

– Prevents my variables, functions, etc., from interfering with
yours

– Remember: real programs have many thousands of entities
– Locality is good!

● Keep names as local as possible

 12

Scope : examples

void f(int x) // f is global, x is local to f

{

 int z = x+7; // z is local

}

int g(int x) // g is global, x is local to g

{

 int f = x+2; // f is local

 return 2*f;

}

 13

Scope : examples

int x; // global variable – avoid those where you can
int y; // another global variable

int f()
{
 int x; // local variable (Note – now there are two x’s)
 x = 7; // local x, not the global x
 {

int x = y;// another local x, initialized by the global y
 // (Now there are three x’s)
++x; // increment the local x in this scope

 }
}
// avoid such complicated nesting and hiding: keep it simple!

 14

Scope : examples

#include "std_lib_facilities.h" // get max and abs from here
// no r, i, or v here
class My_vector {

vector<int> v; // v is in class scope
public:

int largest() // largest is in class scope
{
int r = 0; // r is local
for (int i = 0; i<v.size(); ++i) // i is in statement scope
r = max(r,abs(v[i]));
// no i here
return r;
}
// no r here

};
// no v here

 15

Recap: Why functions?
● Chop a program into manageable pieces

– “divide and conquer”
● Match our understanding of the problem domain

– Name logical operations
– A function should do one thing well

● Functions make the program easier to read
● A function can be useful in many places in a program
● Ease testing, distribution of labor, and maintenance
● Keep functions small

– Easier to understand, specify, and debug

 16

Functions
● General form:

– return_type name (formal arguments); // a declaration
– return_type name (formal arguments) body // a definition
– For example

double f(int a, double d) { return a*d; }

● Formal arguments are often called parameters/formal parameters
● If you don’t want to return a value give void as the return type

 void increase_power_to(int level);

 void means “doesn’t return a value”

 17

Functions
● A body is a block or a try block

– For example:

 { /* code */ } // a block

● Functions represent/implement computations/calculations

 try // a try block
 {
 /* code */
 }
 catch(exception& e) { /* code */ }

 18

Functions: Call by Value
// call-by-value (send the function a copy of the argument’s
value)

int f(int a) {

 a = a+1;

 return a; }

int main()

{

int xx = 0;

cout << f(xx) << \n ;′ ′ // writes 1

cout << xx << \n ; ′ ′ // writes 0; f() doesn’t change xx

int yy = 7;

cout << f(yy) << \n ; ′ ′ // writes 8; f() doesn’t change yy

cout << yy << \n ; ′ ′ // writes 7

}

0

0

7

7

a:

xx:

a:

yy:

copy the value

copy the value

 19

Functions: Call by Reference
// call-by-reference (pass a reference to the argument)

int f(int& a) {

 a = a+1;

 return a; }

int main()

{

int xx = 0;

cout << f(xx) << \n ;′ ′ // writes 1

// f() changed the value of xx

cout << xx << \n ; ′ ′ // writes 1

int yy = 7;

cout << f(yy) << \n ; ′ ′ // writes 8

// f() changes the value of yy

cout << yy << \n ; ′ ′ // writes 8

}

0

7

a:

xx:

yy:
2nd call (refer to yy)

1st call (refer to xx)

 20

Functions: Call by Reference, with const
// call-by-reference (pass a reference to the argument)

int f(const int& a) {

 a = a+1; // error, not allowed

 return a; }

int main()

{

int xx = 0;

cout << f(xx) << \n ;′ ′ // writes 1

// f() changed the value of xx

cout << xx << \n ; ′ ′ // writes 1

int yy = 7;

cout << f(yy) << \n ; ′ ′ // writes 8

// f() changes the value of yy

cout << yy << \n ; ′ ′ // writes 8

}

 21

Functions: Call by Reference, with const
// call-by-reference (pass a reference to the argument)

int f(const int& a) {

 //a = a+1;

 return a+1; }

int main()

{

int xx = 0;

cout << f(xx) << \n ;′ ′ // writes 1

// f() didn’t change the value of xx

cout << xx << \n ; ′ ′ // writes 0

int yy = 7;

cout << f(yy) << \n ; ′ ′ // writes 8

// f() didn’t change the value of yy

cout << yy << \n ; ′ ′ // writes 7

}

0

7

a:

xx:

yy:
2nd call (refer to yy)

1st call (refer to xx)

 22

Function calls
● Why reference arguments?

– No time spent on copying values
– No space is used for copies of values
– Can manipulate containers (like vector)
– Can remedy the limitation of C++ to return only one value by

updating the values of provided by reference variables
– Remember: real programs have many thousands of entities

● Avoid non-const reference arguments when you do not plan to
change/update their values

 23

Function calls: some guidelines
● Use pass-by-value to pass very small object
● Use pass-by-const-reference to pass large objects that you don’t

need to modify
● Return a result rather than modifying the object through a reference

argument (when possible)
● Use pass-by-reference only when you have to, i.e. for functions that

need to change several objects

 24

Example and in-class work
● Let’s take a look at a few examples I have in the file Example.cpp
● Then let’s grab the suggested code for the statistics program and

incorporate a few suggestions into it:
– We want to keep sorting, finding minimum, maximum, mean and

median as one function, but we want to be able to return the
smallest, the largest, the mean and the median back to the
caller. What can we do?

– We would also like to make “input” as a separate function.

 25

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

