
Chapter 5: Errors

 2

Abstract

● When we program, we have to deal with errors.

Our most basic aim is correctness, but we must deal with
incomplete problem specifications, incomplete programs, and
our own errors.

Here, we’ll concentrate on a key area: how to deal with
unexpected function arguments.

We’ll also discuss techniques for finding errors in programs:
debugging and testing.

 3

Errors
● “ … I realized that from now on a large part of my life would be spent finding and

correcting my own mistakes.”

Maurice Wilkes, 1949
● When we write programs, errors are natural and unavoidable; the question is, how

do we deal with them?
– Organize software to minimize errors.
– Eliminate most of the errors we made anyway.

● Debugging
● Testing

– Make sure the remaining errors are not serious.

● Author’s guess is that avoiding, finding, and correcting errors is 95% or more of the
effort for serious software development.

● We can do much better for small programs.
– or worse, if we’re sloppy

 4

Our program

1) Should produce the desired results for all legal inputs

2) Should give reasonable error messages for illegal inputs

3) Need not worry about misbehaving hardware

4) Need not worry about misbehaving system software

5) Is allowed to terminate after finding an error

● 3, 4, and 5 are true for beginner’s code;

often, we have to worry about those in real software.S

 5

Sources of errors

● Poor specification

if not all details are clear
about what a program should
do, we are “unlikely” to
adequately examine the
“dark corners” and make
sure that all cases are
handled

 6

Sources of errors

● Poor specification

if not all details are clear
about what a program should
do, we are “unlikely” to
adequately examine the
“dark corners” and make
sure that all cases are
handled

● Incomplete programs

during the development,
there are cases that haven’t
yet take care of. What we
must aim for is to know when
we have handled all cases.

 7

Sources of errors

● Unexpected arguments

Functions take arguments.

If a function is given an
argument we don’t handle,
we have a problem.

 8

Sources of errors

● Unexpected arguments

Functions take arguments.

If a function is given an
argument we don’t handle,
we have a problem.

● Unexpected input

Programs typically read data
(from …). A program makes
many assumptions about
such input.

 9

Sources of errors

● Unexpected state

Most programs keep a lot of
data around for use by
different parts of the system.
Examples: address lists,
phone directories, vectors of
temperature readings, etc.

What if such data is
incomplete or wrong? The
various parts of the program
must still manage.

● Logical errors

The code simply doesn’t do
what it is supposed to do.
We’ll have to find and fix
such problems.

 10

Sources of errors

● Unexpected state

Most programs keep a lot of
data around for use by
different parts of the system.
Examples: address lists,
phone directories, vectors of
temperature readings, etc.

What if such data is
incomplete or wrong? The
various parts of the program
must still manage.

 11

Kinds of errors

● Compile-time errors (compiler is our first line of defence)
– Syntax errors
– Type errors

● Link-time errors
● Run-time errors

– Detected by computer (crash)
– Detected by library (exceptions)
– Detected by user code

● Logic errors
– Detected by programmer (code runs, but produces incorrect output)

 12

Compile-time errors

● Syntax errors

an example:

int s1=area(7;

● Type errors

 13

Exceptions

● The fundamental idea is to separate detection of an error
(should be done in a called function) from the handling of an
error (should be done in the calling function), while ensuring
that a detected error cannot be ignored

● The basic idea: a function finds an error it cannot handle, then
it doesn’t return normally, instead it throws an exception
indicating what when wrong. Any indirect or direct caller can
catch the exception and specify what to do. A function
expresses the interest in exceptions by using a try-block. If no
caller catches an exception, the program terminates.

 14

Bad function arguments
● The compiler helps:

– Number and types of arguments must match

int area(int length, int width)
{

return length*width;
}

int x1 = area(7); // error: wrong number of arguments
int x2 = area("seven", 2); // error: 1st argument has a wrong type
int x3 = area(7, 10); // ok
int x5 = area(7.5, 10); // ok, but dangerous: 7.5 truncated to 7;

 // most compilers will warn you
int x = area(10, -7); // this is a difficult case:

 // the types are correct,
 // but the values make no sense

 15

Bad function arguments
● So, how about int x = area(10, -7); ?
● Alternatives

– Just don’t do that
● Rarely a satisfactory answer

– The caller should check
● Hard to do systematically

– The function should check
● Return an “error value” (not general, problematic)
● Set an error status indicator (not general, problematic – don’t do this)
● Throw an exception

● Note: sometimes we can’t change a function that handles errors in a way
we do not like
– Someone else wrote it and we can’t or don’t want to change their code

 16

Bad function arguments

● Why worry?
– You want your programs to be correct
– Typically the writer of a function has no control over how it is called

● Writing “do it this way” in the manual (or in comments) is no solution – many
people don’t read manuals

– The beginning of a function is often a good place to check
● Before the computation gets complicated

● When to worry?
– If it doesn’t make sense to test every function, test some

 17

Reporting an error

● Return an “error value” (not general, problematic)
int area(int length, int width) // return -1 for bad input
{

if(length <=0 || width <= 0) return -1;
return length*width;

}
● So, “let the caller beware”
int z = area(x,y);
if (z<0) error("bad area computation");
// …

● Problems
– What if I forget to check that return value?
– For some functions there isn’t a “bad value” to return (e.g., max())

Error function by default
terminates the program with a
system error message + the string
we pass as an argument to it

 18

Reporting an error
● Set an error status indicator (not general, problematic, don’t!)
int errno = 0; // used to indicate errors
int area(int length, int width)
{

if (length<=0 or width<=0) errno = 7;
return length*width;

}

● So, “let the caller check”
int z = area(x,y);
if (errno==7) error("bad area computation");
// …

● Problems
– What if I forget to check errno?
– How do I pick a value for errno that’s different from all others?
– How do I deal with that error?

 19

Reporting an error
● Report an error by throwing an exception
class Bad_area { }; // a class is a user defined type

 // Bad_area is a type to be used as an exception

int area(int length, int width)
{

if (length<=0 or width<=0) throw Bad_area{};
return length*width;

}

● Catch and deal with the error (e.g., in main())
try {

int z = area(x,y); //if area() doesn’t throw an
} // exception, make the assignment and proceed
catch(Bad_area) { // if area() throws Bad_area{}, respond

cerr << "oops! Bad area calculation – fix program\n";
}

// note the {} – a value

cerr is meant for error output

 20

Exceptions

● Exception handling is general
– You can’t forget about an exception: the program will terminate if

someone doesn’t handle it (using a try … catch)
– Just about every kind of error can be reported using exceptions

● You still have to figure out what to do about an exception
(every exception thrown in your program)
– Error handling is never really simple

 21

Out of range

● Consider this code fragment:

vector<int> v(10); // a vector of 10 ints,
 // each initialized to the default value, 0,

 // referred to as v[0] .. v[9]
for (int i = 0; i < v.size(); ++i) v[i] = i;
for (int i = 0; i <= 10; ++i)

cout << "v[" << i << "] == " << v[i] << endl;

 22

Out of range

● Consider this code fragment:

vector<int> v(10); // a vector of 10 ints,
 // each initialized to the default value, 0,
 // referred to as v[0] .. v[9]

for (int i = 0; i < v.size(); ++i) v[i] = i;
for (int i = 0; i <= 10; ++i)

cout << "v[" << i << "] == " << v[i] << endl;

● vector’s operator[] (subscript operator) reports a bad index (its
argument) by throwing a Range_error if you use #include
"std_lib_facilities.h"
– The default behavior can differ
– You can’t make this mistake with a range-for

 23

Exceptions – for now

● For now, just use exceptions to terminate programs gracefully, like this

int main()
try
{
 // …
}
catch (out_of_range&) { // out_of_range exceptions
 cerr << "oops – some vector index out of range\n";
}
catch (…) { // all other exceptions
 cerr << "oops – some exception\n";
}

 24

A function error()

● Here is a simple error() function as provided in std_lib_facilities.h
● This allows you to print an error message by calling error()
● It works by disguising throws, like this:

void error(string s) // one error string
{

throw runtime_error(s);
}

void error(string s1, string s2)
 // two error strings

{
error(s1 + s2); // concatenates

}

 25

Using error()

● Example:
cout << "please enter integer in range [1..10]\n";
int x = -1; // initialize with unacceptable value (if

possible)
cin >> x;
if (!cin) // check that cin read an integer
 error("didn’t get a value");
if (x < 1 or 10 < x) // check if value is out of range
 error("x is out of range");
// if we get this far, we can use x with confidence

}

 26

invalid_argument and out_of_range

● invalid_argument exception is thrown when we have invalid
arguments

● out_of_range exception is thrown by the at() member funcion of
vector class and similar entities

grab the file ThrowingAndCatchingExample.cpp from Blackboard or
our website

 27

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● C++ How To Program, 10th edition, by P. Deitel and H. Deitel
● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

