
CSI 32
Chapter 4: Computation

 2

Today we will talk about

● Functions
● vector class

 3

Functions: Why bother with functions?

● We define a function when we want to separate a
computation because it
– makes the computation logically separate
– makes the program text clearer (by naming the computation)
– can be used in more than one place in our program
– eases testing, distribution of labor, and maintenance

 4

Functions: declarations and definitions

● Before a name can be used
in C++ program, it must be
declared

● We don’t always need to see
the definition of the function
we are going to use, hence it
makes sense to see only its
name, its return type, and its
list of parameters.

 5

Functions: declarations and definitions

● Before a name can be used
in C++ program, it must be
declared

● We don’t always need to see
the definition of the function
we are going to use, hence it
makes sense to see only its
name, its return type, and its
list of parameters.

int max(int a, int b);

void main()
{
 int x = 10, y = 9;
 cout << max(x,y) << endl;
}

int max(int a, int b)
{
 if (a > b) { return a; }
 else {return b; }
}

 6

Functions: declarations and definitions

● A declaration is a statement
that introduces a name into a
scope
– specifying a type for what is

named (e.g. a variable or a
function)

– optionally, specifying an
initializer (e.g. initializer
value, or a function body)

int max(int a, int b);

void main()
{
 int x = 10, y = 9;
 cout << max(x,y) << endl;
}

int max(int a, int b)
{
 if (a > b) { return a; }
 else {return b; }
}

 7

Functions: declarations and definitions

● A declaration that also fully
specifies the entity declared
is called a definition

● Every definition (by
definition) is also a
declaration.

int max(int a, int b)
{
 if (a > b) { return a; }
 else {return b; }
}

void main()
{
 int x = 10, y = 9;
 cout << max(x,y) << endl;
}

 8

Functions: declarations and definitions

● Some other terminology:

declaration prototype

 9

Header files

● How do we manage
declarations and definitions?

● After all, they have to be
consistent, and in real-world
problems there can be tens
of thousands of declarations.

 10

Header files

● How do we manage
declarations and definitions?

● After all, they have to be
consistent, and in real-world
problems there can be tens
of thousands of declarations.

● The key to managing
declarations of facilities
defined “elsewhere” in C++
is the header.

● A header is a collection of
declarations, typically
defined in a file

 11

Header files

● How do we manage
declarations and definitions?

● After all, they have to be
consistent, and in real-world
problems there can be tens
of thousands of declarations.

● The key to managing
declarations of facilities
defined “elsewhere” in C++
is the header.

● A header is a collection of
declarations, typically
defined in a file

● .h is the most common for
C++ headers

● Such headers are then
#included in our source files

 12

Header files

● How do we manage
declarations and definitions?

● After all, they have to be
consistent, and in real-world
problems there can be tens
of thousands of declarations.

● The key to managing
declarations of facilities
defined “elsewhere” in C++
is the header.

● A header is a collection of
declarations, typically
defined in a file

● .h is the most common for
C++ headers

● Such headers are then
#included in our source files

● .cpp is the most common for
C++ source files

 13

defs.cpp:
#include “AheaderFile.h”

int max(int a, int b)
{
 if (a > b) { return a; }
 else {return b; }
}

AHeaderFile.h:
int max(int a, int b);

testing.cpp:
#include “AheaderFile.h”

void main()
{
 int x = 10, y = 9;
 cout << max(x,y) << endl;
}

Header files

 14

Scope

● A scope is a region of program text
● A name is declared in a scope and valid (it is called “is in

scope”) from the point of its declaration until the end of
the scope in which it was declared

 15

Scope

void f()
{

g(); // error: g() isn’t yet in scope
}

void g()
{

f(); // OK: f() is in scope
}

void h()
{

int x = y; // error: y isn’t yet in scope
int y = x; // OK: x is in scope
g(); // OK: g() is in scope

}

 16

Scope

● We will talk more about the scope later on in course

 17

In-class work
● Create three files: my.h, my.cpp and use.cpp
● The header file my.h contains

void print_foo();

int do1(int, int, int);

double do2(int, int, int);

● The source file my.cpp #includes my.h, iostream, and defines
print_foo() to print the word “WELCOME”;

defines do1 to return the largest of three integer values provided as
arguments, and

defines do2 to return the average of three integer values
● The source file use.cpp #includes my.h, iostream, and defines main() find

the largest of the three integers taken from a user, as well as their average.

 18

Data for Iteration - Vector

● To do just about anything of interest, we need a collection of data to
work on. We can store this data in a vector.

For example:
// read some temperatures into a vector:
int main()
{

vector<double> temps; // declare a vector of type double to store temperatures
double temp; // a variable for a single temperature value
while (cin>>temp) // cin reads a value and stores it in temp

 temps.push_back(temp); // store the value of temp in the vector
// … do something …

}
// cin>>temp will return true until we reach the end of file or encounter
// something that isn’t a double: like the word “end”

 19

Data for Iteration - Vector

● See the program vectorWork.cpp on our webpage

 20

In-class work

● Write a program that reads in a sequence of decimal values from
keyboard (from the user), and then displays:
– the mean (average),
– the median value, and
– the largest and the smallest values in the sequence

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

