
CSI 32
Chapter 4: Computation



  2

Topics to discuss:

● Computations
● Objectives and tools
● Expressions
● Selection / Decision statements
● Iteration / Looping statements



  3

Computation

● From one point of view, all 
that program ever does is to 
compute:
– take some input
– produce some output

● Input: keyboard, mouse, file, 
touch screen, etc

● Output: screen, file, network 
connection, other programs, 
other parts of program, etc.



  4

Computation

● From one point of view, all 
that program ever does is to 
compute:
– take some input
– produce some output

● From a programming point of 
view the most important and 
interesting categories of 
input/output are “to/from 
another program” and “to/from 
other parts of a program”

● Input: keyboard, mouse, file, 
touch screen, etc

● Output: screen, file, network 
connection, other programs, 
other parts of program, etc.



  5

Computation

● From one point of view, all 
that program ever does is to 
compute:
– take some input
– produce some output

● From a programming point of 
view the most important and 
interesting categories of 
input/output are “to/from 
another program” and “to/from 
other parts of a program”

● Input: keyboard, mouse, file, 
touch screen, etc

● Output: screen, file, network 
connection, other programs, 
other parts of program, etc.

● Most of the rest of the book 
could be seen as discussing 
“how do we express a program 
as a set of cooperating parts 
and how can they 
share/exchange data”?



  6

Computation

● Computation is an act of producing some outputs based on 
some inputs.



  7

Objectives and tools

● Our job as programmers is to express computations
– correctly
– simply
– Effectively

● These concerns become ours the minute we start writing the 
code for others and accept that responsibility to do that well.



  8

Objectives and tools

● The main tool for organizing a program (and our thoughts as we 
program) is to break up a big computation into many little ones.
– using abstraction, i.e. hide details we don’t need to use a facility, 

for example: use built-in procedure sort to sort a phone book
– using divide and conquer technique, i.e. take a large program and divide 

it into several little ones

for example: when building a dictionary, separate the job into three:
● read the data
● sort the data
● output the data



  9

Objectives and tools

● Why does “organizing the program” help?
– We are not good at dealing with large problems
– A 1000-line program is likely to have far more than 10 times as many 

errors as a 100-line program
– A program built out of parts is likely I be slightly larger than a program 

where everything is optimally merged together
– We cannot write and maintain large monolithic programs, so for large 

program with , say 10,000,000 lines, applying abstraction and divide-and-
conquer is not just an option, but is an essential requirement



  10

Expressions

int a = 3, b = 4, c = 5;

a + b

return a*a + b*b == c*c

● Expression is the most basic 
building block of programs

● 3, 4, and 5 are literals to 
initialize the variables a, b, 
and c (simplest expressions)

● Names of variables are also 
expressions

● Assignment expressions
● Expressions with comparison



  11

Constant Expressions

const double p = 3.14;

constexpr double p2 = 
3.14;

p = 3.141592654; // error

p2 = 3.1416;     // error

p + 1  // a constant      

       // expression

● Programs typically use a lot 
of constants

● We want meaningful names 
for those constants

● C++ 98 didn’t have 
constexpr, so people used 
const



  12

Operators

● Most of C++ operators are similar to Python operators (see pages 97-98)

● ++val prefix increment / pre-increment

● val++ postfix increment / post-increment

● --val prefix decrement / pre-decrement

● val-- postfix decrement / post-increment

see the program incrementExamples.cpp 

● Word of caution: a < b < c doesn’t evaluate as “b is between a and c”
– a < b < c means (a<b)<c, and since (a<b) evaluates to a Boolean value, 

we will end up with either true < c or false < c. 

 true is equivalent to 1, and false is equivalent to 0          see example.cpp



  13

Statements

An expression statement is an expression followed by a semicolon

p = x; // assignment statement

p++;   // expression statement, increment statement

cout << p;   // output statement

In general, we want a statement to have some effect

if (x==5);   // an empty statement, doing nothing

{y=2;}       // y gets the value of 2



  14

Selection / Decision statements

if-statements are a kind of selection / decision process

if (x==5)

   cout << “x is equal to 5\n”;

else

   cout << “x is equal to 5\n”;



  15

Selection / Decision statements

if-statements are a kind of selection / decision process

if (x==5)

   { 

     cout << “x is equal to 5\n”;

     return 5;

   }

else {

   cout << “x is equal to 5\n”;

   return -1;}



  16

Selection / Decision statements

if- else if - else statements, no elif like in Python

if (x > 5)

    cout << “x is less than 5\n”;

else if (x > 5) 

    cout << “x is greater than 5\n”;

else

    cout << “x is equal to 5\n”;



  17

Selection / Decision statements

switch-statements are another kind of selection / decision process

switch(x){

   case ‘a’:

    cout << “letter a\n”;

      break;

   case ‘b’:

      cout << “letter b\n”;

      break;

   default:

      cout << “not a nor b\n”;

}    see switchExample1.cpp and switchExample1.cpp

the value of x is 
compared against 
many constants.



  18

while-statements (iteration)

while-statements are similar to Python statements, with conditionals 
enclosed into parentheses

int i = 0;

while (i < 100){
   cout << i << “squared is ” << i*i << endl;
   ++i;
} 

A sequence of statements enclosed by curly braces is called a block 
or a compound statement. 

Empty block { } can be used to show that nothing is to be done.



  19

for-statements (iteration)

for-statements are different from for statement in Python.

for(int i=0; i < 100; i++)

   cout << i << “squared is ” << i*i << endl;

 



  20

while and for loops

int i = 0;

while (i < 100){
   cout << i << “: ” 
        << i*i << endl;
   ++i;
}

for(int i=0; i < 100; i++)
{
   cout << i << “: ” 
        << i*i << endl;
}



  21

while and for loops

int value, s = 0;

while (cin >> value)
   s + = value;
cout << “their sum is “
   << s;

int s = 0;

for(int value; cin >> value;)
   s += value;
cout << “their sum is “
   << s;

To-do: grab any of the code fragments (while or for loop). 
    Change them to accept decimal values (use double type).
    Change the loop to find the sum of the squares of entered values.
    Run the program. 
    Enter 5 – 10 decimal values (separated by space of by an Enter), 
then press Ctr-Z and hit Enter.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

