
CSI 32
Chapter 3: Objects, Types and Values

 2

We will talk about

● Input
● Output
● Types: int, float, string
● Objects
● Operations and operators

 3

Types and objects

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

 4

Types and objects

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 5

Types and objects

● An object is a region of
memory with a type that
specifies what kind of
information can be placed
into it

● OOP (Object Oriented
Programming): object is an
instance of a class

●

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 6

Types and objects

● An object is a region of
memory with a type that
specifies what kind of
information can be placed
into it

● A named object is called
variable

●

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 7

Types and objects

● An object is a region of
memory with a type that
specifies what kind of
information can be placed
into it

● A named object is called
variable

● Type defines a set of
possible values and a set of
operations (for an object)

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 8

Types and objects

● The data items we put into
variables are called values,
or

● value is a set of bits in
memory interpreted
according to a type

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 9

Types and objects

● int type, on a typical
computer, uses 4 bytes (4*8
= 32 bits)

● double uses 8 bytes
● string takes up different

amounts of space

int age = 23;

double weight = 115.6

string fullName = “Emma Smith”

23

115.6

Emma Smith

int:

double:

string:

age:

weight:

fullName:

 10

Some other built-in types

built-in types brief description # of bytes (usually)
char x x is a character 1
bool x x is a boolean (true or

false)
1

float x x is a floating point number
(short double)

4

long int x
long x

long integer 8

unsigned int x
unsigned x

non-negative integers from
[0, 232-1]

4

 11

Declaration, definition, initialization, assignment

● A declaration is a statement
that gives a name to an object

● The statement that introduces
a new name into a program
and sets aside memory for a
variable is called a definition

● Initialization gives a variable
its initial value

● Assignment is giving a
variable a new value

int age; // a definition

int myFunc(int, double, char);
// a declaration

age = 23; // an initialization
age = 30; // an assignment

double weight = 115.6
// definition and initialization
// definition can provide an
// initial value

 12

Input and output with strings
#include <iostream>

using namespace std;

int main()
{
 string firstName, lastName;
 cout << "Enter your first name: ";
 cin >> firstName;
 cout << "Enter your last name: ";
 cin >> lastName;

 cout << "Hello, ";
 cout << firstName << " " << lastName << "! ";
 cout << "How are you?\n";
 return 0;
}

see InputOutputWithStrings.cpp

 13

In-class work – part 1

Grab the file In-classWork1.cpp from our website:
https://natna.info/CSI32/notes.html and follow the instructions
given there.

https://natna.info/CSI32/notes.html

 14

In-class work – part 2

Grab the file In-classWork2.cpp from our website:
https://natna.info/CSI32/notes.html and follow the instructions
given there.

https://natna.info/CSI32/notes.html

 15

Integers and strings

● Strings
– cin >> reads a word
– cout << writes
– + concatenates
– += s adds the string s at end
– ++ is an error
– - is an error
– … see pages 66-67

● Integers and floating-point numbers
– cin >> reads a number
– cout << writes
– + adds
– += n increments by the int n
– ++ increments by 1
– - subtracts
– … see pages 66-67

The type of a variable determines which operations are valid and what
their meanings are for that type
(it's called “overloading” or “operator overloading”)

 16

Type safety

● Every object is given a type when it is defined
● A program (part of the program) is type-safe when objects are

used according to the rules for their type:
– A variable is used only after it is initialized
– Only operations defined for the variable's declared type are applied
– Every operation defined for a variable leaves the variable with a valid

value

● A C++ compiler cannot guarantee complete type safety

 17

Type safety: safe and unsafe conversions

● Safe conversions
– bool to char
– bool to int
– bool to double
– char to int
– char to double
– int to double

For some computers, for a really
large int we can suffer a loss of
precision when converting to
double

● Unsafe conversions
– When converting to a value of

another type that doesn’t
equal to the original value

grab at typeSafeyExamples.cpp
at our website
https://natna.info/CSI32/notes.ht
ml

follow the to-do instructions

https://natna.info/CSI32/notes.html
https://natna.info/CSI32/notes.html

 18

Type safety: safe conversions

● Every object is given a type when it is defined.
● A program (part of the program) is type-safe when objects are

used according to the rules for their type:
– A variable is used only after it is initialized
– Only operations defined for the variable's declared type are applied
– Every operation defined for a variable leaves the variable with a valid

value

● A C++ compiler cannot guarantee complete type safety

 19

C++11 Hint

● C++ 11 introduced an initialization notation that outlaws
narrowing conversions

double x{2.7}; // OK

int y{x}; // error: double → int might narrow

int a{1000}; // OK

char b{a}; // error: int → char might narrow

char b1{1000}; // error, assuming 8-bit chars (28 = 256), hence narrowing

char b2{48}; // OK

 20

C++14 Hint

● You can use the type of an initializer as the type of a variable
– // “auto” means “the type of the initializer”
– auto x = 1; // 1 is an int, so x is an int
– auto y = c ;′ ′ // ′c′ is a char, so y is a char
– auto d = 1.2; // 1.2 is a double, so d is a double

– auto s = Howdy ;″ ″ // ″Howdy″ is a string literal of type const char[]
 // so don’t do that until you know what it means!

– auto sq = sqrt(2); // sq is the right type for the result of sqrt(2)
 // and you don’t have to remember what that is

– auto duh; // error: no initializer for auto

 21

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

