
CSI 32
Introductions

 2

Course Structure

● In-class:
– Topics from textbook
– Examples
– Exercises – practice

(whenever possible)
– Quizzes

● At home:
– Reading
– Do “try this”
– Work on drills (before exercises)
– Work on exercises
– Work on homework (for grade)
– See the review questions
– See Terms

 3

Best practices

● Read the chapter ahead of
class meeting

● Read the chapter after the
class meeting

● Start working on homework
assignment right after class

● Get tutoring help
immediately

● Do not put issues aside for a
later time

 4

This course is

● a continuation of CSI 31
● an introductory programming

course in C++
● for beginners who want to

become professionals
● for those who are willing to

work hard

 5

This course is not

● a course in C++
programming language

● a “washout” course

(you can handle it!)

 6

The goals

● to review/learn
– the fundamental

programming concepts
– key useful techniques
– basic standard C++ facilities

● after the course you will be
able to
– proceed with an “advanced”

C++ programming course
– read large C++ programs
– write “small” C++ programs

 7

Not the goals of this course

● to become an expert software developer
● to become an expert in C++
● to become an expert user of advanced libraries

 8

Attendance

● Attend every lecture!

● If you cannot attend the class:
– Notify me
– Check out the meeting notes, after class notes, and the homework assignment
– make sure to read the chapters (sections) we covered and look through the

lecture slides
– Follow up with the homework, make sure to submit it by the due date
– If you missed a quiz, make-ups will be given from time to time on Thursdays,

12pm – 1:50pm

 9

Quizzes

● weekly, most likely on Wednesdays, at the end of the class
● Make-ups:

– to be eligible for a make-up quiz, your absence has to be an excused
absence (if its medical, provide a letter from the doctor’s office)

– all make-ups will only be on some Thursdays, 12 pm – 1:50 pm
– the make-up can be taken only at the next available opportunity

 10

Homework assignments

● Will consist of:
– Reading
– Drills (work on them!)
– Exercises for practice
– Exercises for grade

● You will submit:
– Exercises for grade only

● To succeed in this class:
– Practice as much as possible
– Read the textbook

 11

Self-development / recommended reads

● I will be posting some recommended readings from time to
time

● Solely for self-development
● Will not be used in quizzes / exams

 12

Cooperate on learning

● Except for the work you hand in as individual contributions, I
strongly encourage you to collaborate and help each other

● If in doubt if a collaboration is legitimate: ask!
– Don’t claim to have written code that you copied from others
– Don’t give anyone else your code (to hand in for a grade)
– When you rely on the work of others, explicitly list all of your sources

– i.e. give credit to those who did the work

● Use tutoring help
– Come prepared with questions
– There are no stupid questions!!!

 13

Cooperate on learning

● Don’t study alone when you don’t have to
– Form study groups
– Do help each other (without plagiarizing)

 14

Why C++?

● C++ has a number of differences from Python
– Strictly typed language
– Access to class data members and member functions is enforced
– Compilable language
– Gives us an opportunity to talk about memory management and

garbage collection, etc.

● C++ is precisely and comprehensively defined by an ISO
standard
– And that standard is almost universally accepted
– The most recent standard is ISO C++ 2022

 15

C++ is a compiled language

C++ source (.cpp file)

Object code file (.obj)

Compiler

Linker Executable program

A simplified compilation process:

C++ code is converted into
machine language code
(object code)

 16

C++ is a compiled language

C++ source (.cpp file)

Object code file (.obj)

Compiler

Linker Executable program

A simplified compilation process:

Note: object code and
executables are not
portable among systems.
Code compiled for
Windows machine will not
run on a Linux machine

 17

Errors

Errors found by the compiler are called compile-time errors.

Errors found by the linker are called compile-time errors.

Errors not found until the program runs are called run-time
errors or logic errors.

 18

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
}

 19

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
}

comments (anything written after the token //)

 20

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
} preprocessing directive to include the header

iostream (used for input/output stream)

 21

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
} preprocessing directive to include the header

iostream (used for input/output stream)
Our textbook is using the header
std_lib_facilities.h

 22

C++ is a compiled language

C++ source (.cpp file)

Object code file (.obj)

Compiler

Linker Executable program

A more detailed compilation process for our code:

Header file (.h)

Preprocessor all the lines with # are processed

Preprocessed C++ file

Object code from the
C++ standard library:

ostream.obj

 23

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
} Every C++ program must have a function

called main to tell it where to start
executing

 24

A function

A function has 4 parts:

● a return type
here int (stands for integer, reserved keyword)

● a name
here main

● a parameter list enclosed in prentheses
here empty

● a function body enclosed in a set of curly braces { }
lists actions/statements that the function is to perform

 25

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
}

(abbreviation) standard namespace, or C++ standard
library that has definitions of many useful objects.

 26

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
}

output object,
standard output stream (character output stream)

output operator

 27

A sample program

// This program outputs the message
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()
{

std::cout << "Hello, world!\n";

return 0;
}

special character,
indicates a newline

 28

Resources used for these slides

● slides provided by B. Stroustrup at
https://www.stroustrup.com/PPP2slides.html

● C++ How To Program, 10th edition, by P. Deitel and H. Deitel
● Class textbook

https://www.stroustrup.com/PPP2slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

