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Course Structure

● In-class:
– Topics from textbook
– Examples
– Exercises – practice 

(whenever possible)
– Quizzes

● At home:
– Reading
– Do “try this”
– Work on drills (before exercises)
– Work on exercises
– Work on homework (for grade)
– See the review questions
– See Terms
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Best practices

● Read the chapter ahead of 
class meeting

● Read the chapter after the 
class meeting

● Start working on homework 
assignment right after class 

● Get tutoring help 
immediately

● Do not put issues aside for a 
later time
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This course is

● a continuation of CSI 31 
● an introductory programming 

course in C++
● for beginners who want to 

become professionals
● for those who are willing to 

work hard
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This course is not

● a course in C++ 
programming language

● a “washout” course

(you can handle it! )
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The goals

● to review/learn
– the fundamental 

programming concepts
– key useful techniques
– basic standard C++ facilities

● after the course you will be 
able to
– proceed with an “advanced” 

C++ programming course
– read large C++ programs
– write “small” C++ programs
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Not the goals of this course

● to become an expert software developer
● to become an expert in C++
● to become an expert user of advanced libraries
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Attendance

● Attend every lecture!

● If you cannot attend the class:
– Notify me
– Check out the meeting notes, after class notes, and the homework assignment 
– make sure to read the chapters (sections) we covered and look through the 

lecture slides
– Follow up with the homework, make sure to submit it by the due date
– If you missed a quiz, make-ups will be given from time to time on Thursdays, 

12pm – 1:50pm
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Quizzes

● weekly, most likely on Wednesdays, at the end of the class
● Make-ups:

– to be eligible for a make-up quiz, your absence has to be an excused 
absence (if its medical, provide a letter from the doctor’s office)

– all make-ups will only be on some Thursdays, 12 pm – 1:50 pm
– the make-up can be taken only at the next available opportunity
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Homework assignments

● Will consist of:
– Reading 
– Drills (work on them!)
– Exercises for practice
– Exercises for grade

● You will submit:
– Exercises for grade only 

● To succeed in this class:
– Practice as much as possible
– Read the textbook
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Self-development / recommended reads

● I will be posting some recommended readings from time to 
time

● Solely for self-development
● Will not be used in quizzes / exams
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Cooperate on learning

● Except for the work you hand in as individual contributions, I 
strongly encourage you to collaborate and help each other

● If in doubt if a collaboration is legitimate: ask!
– Don’t claim to have written code that you copied from others
– Don’t give anyone else your code (to hand in for a grade)
– When you rely on the work of others, explicitly list all of your sources 

– i.e. give credit to those who did the work

● Use tutoring help
– Come prepared with questions
– There are no stupid questions!!!
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Cooperate on learning

● Don’t study alone when you don’t have to 
– Form study groups
– Do help each other (without plagiarizing)
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Why C++?

● C++ has a number of differences from Python
– Strictly typed language
– Access to class data members and member functions is enforced
– Compilable language
– Gives us an opportunity to talk about memory management and 

garbage collection, etc.

● C++ is precisely and comprehensively defined by an ISO 
standard
– And that standard is almost universally accepted
– The most recent standard is ISO C++ 2022
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C++ is a compiled language

C++ source (.cpp file)

Object code file ( .obj )

Compiler

Linker Executable program

A simplified compilation process:

C++ code is converted into 
machine language code 
(object code)
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C++ is a compiled language

C++ source (.cpp file)

Object code file ( .obj )

Compiler

Linker Executable program

A simplified compilation process:

Note: object code and 
executables are not 
portable among systems.
Code compiled for 
Windows machine will not 
run on a Linux machine
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Errors

Errors found by the compiler are called compile-time errors.

Errors found by the linker are called compile-time errors.

Errors not found until the program runs are called run-time 
errors or logic errors.
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
}
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
}

comments (anything written after the token // )
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
} preprocessing directive to include the header 

iostream (used for input/output stream)
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
} preprocessing directive to include the header 

iostream (used for input/output stream)
Our textbook is using the header 
std_lib_facilities.h



  22

C++ is a compiled language

C++ source (.cpp file)

Object code file ( .obj )

Compiler

Linker Executable program

A more detailed compilation process for our code:

Header file ( .h )

Preprocessor all the lines with # are processed

Preprocessed C++ file

Object code from the 
C++ standard library: 

ostream.obj



  23

A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
} Every C++ program must have a function 

called main to tell it where to start 
executing
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A function

A function has 4 parts:

● a return type
here int (stands for integer, reserved keyword)

● a name
here main 

● a parameter list enclosed in prentheses
here empty

● a function body enclosed in a set of curly braces { }
lists actions/statements that the function is to perform
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
}

(abbreviation) standard namespace, or C++ standard 
library that has definitions of many useful objects.
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
}

output object, 
standard output stream (character output stream)

output operator
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A sample program

// This program outputs the message 
// “Hello World!” to the screen

#include <iostream>

// C++ programs start by executing function main
int main()  
{ 

std::cout << "Hello, world!\n";

return 0;
}

special character, 
indicates a newline
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Resources used for these slides

● slides provided by B. Stroustrup at 
https://www.stroustrup.com/PPP2slides.html

● C++ How To Program, 10th edition, by P. Deitel and H. Deitel
● Class textbook

https://www.stroustrup.com/PPP2slides.html
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