
 1

CSI31 Lecture 3

Topics:
2.1 The Software Development Process
2.3 Elements of Program
2.4 Output Statements
2.5 Asssignment Statements

 2

Stages of the process of creating a program:

Analyze the problem

Determine specifications

Create a design

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process

 3

Stages of the process of creating a program:

Analyze the problem
- figure out exactly what is the problem to be solved

Determine specifications

Create a design

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process

 4

Stages of the process of creating a program:

Analyze the problem

Determine specifications - describe exactly what your program will
do (not how it will work, but what it will accomplish)

 (for simple programs: what is the input/output, how they relate
to each other)

Create a design

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process

 5

Stages of the process of creating a program:

Analyze the problem

Determine specifications

Create a design - formulate overall structure of the program (how
the program will work)

- algorithms are usually written in pseudocodes

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process

 6

Stages of the process of creating a program:

Analyze the problem

Determine specifications

Create a design

Implement the design
- translate the algorithm into a computer language

Test/Debug the program

Maintain the program

2.1 The Software Development Process

 7

Stages of the process of creating a program:

Analyze the problem

Determine specifications

Create a design

Implement the design

Test/Debug the program
- see if it works as expected (run on as many different inputs as

you can; you should try everything you can think of that might
«break» your program — testing)

- check for errors (bugs) – fix them – debugging

Maintain the program

2.1 The Software Development Process

 8

Stages of the process of creating a program:

Analyze the problem

Determine specifications

Create a design

Implement the design

Test/Debug the program

Maintain the program - continue developing/updating the program
in response to the needs of your users.

2.1 The Software Development Process

 9

Example

Let's go through the steps of the software development process
with the following example:

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

 10

Example

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

Analisys: (analyze the problem)
 I need a program that measures the area of a rectangular room.
 I'll be given length and width. In inches.
 The output should be the area in square meters.

 11

Example

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

Analisys: (analyze the problem)
 I need a program that measures the area of a rectangular room.
 I'll be given length and width. In inches.
 The output should be the area in square meters.

Determine specifications: program will:
● notify the user of what it can do,
● ask to input the length in inches
● ask to input the width in inches
● calculate the area
● output the result

 12

Example

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

Design an algorithm:
● input the length of the room
● input the width of the room
● calculate A= (W * 2.54 * 0.01) * (L * 2.54 * 0.01)
● output area

 13

Example

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

Implementation:
I google'ed for the conversion from inches to meters, and found the
following:

1 meter = 100 centimeters (or 1 centimeter is 0.01 meters)
1 inch = 2.54 centimeters

Thus if I have n inches, it will be n * 2.54 centimeters, and n * 2.54 *
0.01 meters.
The formula for the area of the rectangle is A = W * L.
So the final formula for the area in meters is
 A = (W * 2.54 * 0.01) * (L * 2.54 * 0.01)
 see the program area.py

 14

Example

I'd like to write a program that measures the area of a rectangular
room. I assume that the input data will be in inches and I'd like to
output result in square meters.

2.1 The Software Development Process

Test/Debug the program:
 test on several inputs (0,0), (100,100), (1000,1000), (4,5)

Maintenance:
not needed right now (possibly in the future)

 15

Names (identifiers)

we give names to modules (files), to functions, to variables.
Technically these names are called identifiers.

Python has some rules about how identifiers are formed:
must begin with a letter or underscore (''_''), may be followed by

any sequence of letters, digits or underscores, but no spaces,
points, commas,

legal names:
counter

x2
x2_y

ToGoThere
_234brush

illegal names:
x.y

net pay
10monkeys
_my-counter

2.3 Elements of Programs

 16

Names (identifiers)

! Identifiers are case-sensitive, thus Counter, counter, counTer,
COUNTER are different names

! Some identifiers are part of the Python itself (they are reserved
words), cannot be used as ordinary identifiers (see Table 2.1 on
page 32)

2.3 Elements of Programs

 17

Expressions

the fragment of a code that produce or calculate new data is called
expression.

A simplest kind of expression is literal:
5 in x = 5 2.4 in y = 2.4
True in flag = True
Hello in word = ''Hello'' (string literal)

more complex and interesting expressions are constructed by
combining simpler expressions with operators, and variables.

Operators for numbers: *, +, -, /, **. (2 ** 4 = 24)

 example: (((x+3) * (y-2)) ** 2 + 1023) / 5.4

2.3 Elements of Programs

 18

Expressions

Expressions are the fragments of a program that produce data, and
are composed of literals, variables and operators.

For more information on operators see
Python documentation -> Language Reference -> Expressions

If Python cannot find a value – it reports a NameError.
(in the interactive window try to type in :

>>> print(x)
and see what will be the response)

2.3 Elements of Programs

 19

Command print

Let's take a look at printing statements that display information on
the screen:

Syntax of the print statements:
print() - will produce a blank line of output
print(<expr>)
print(<expr_1>, <expr_2>, ..., <expr_n>) -
sequence of expressions

2.4 Output Statements

 20

The basic assignment statement's form:
<variable> = <expr>

identifier expression

example: x = 9.8 * x * (32 + x)

A variable can be assigned values many times.
x = 1000
x = 4+15
x = 4/5

 - it always returns the value of the most recent assignment
 (each time variable switches to refer to the new value – Python
works this way)

2.5 Assignment Statements

 21

2.5 Assignment Statements

Variable as box

10x

Before

x = x+1 11

After

x

 22

2.5 Assignment Statements

x 10 x = x+1 10

11

x

Before After

Variable as sticky note (Python)

 23

Garbage collection

When a value is no longer referred to by any variable, it is no
longer useful. Python will automatically clear these values out of
memory – garbage collection.

 24

Simultaneous Assignment

- an alternative form of the assignment statement that allows to
calculate several values at the same time

syntax:
<var_1>, <var_2>, ... <var_n> = <expr_1>, <expr_2>, ..., <expr_n>

semantics: tells the Python to evaluate all the expressions on the
right-hand side and then assign these values to the corresponding
variables named on the left-hand side.

Example: sum, diff = 4+3, 4-3
 sum is 7, diff is 1

2.5 Assignment Statements

 25

Simultaneous Assignment

Simultaneous assignment can be used for quick swapping of
values.

Example: Assume that x = 4, y = 6 – and we want to swap their
values.
We will type in:

x, y = y, x

Otherwise we will have to do the following:
temp = y
y = x
x = temp

Word of caution: do not do this in C++

2.5 Assignment Statements

 26

Input statement is used to get some information from the user of the
program and store into a variable.
(for this we use an assignment statement along with a special
expression called input)

syntax:
<variable> = input(<prompt>) (assignment of a string of characters)
<variable> = eval(input(<prompt>)) (assignment of a number)

prompt is an expression that serves to prompt the user for input
 (almost always a string literal)

Input Statements

 27

another example: get three values from the user and find the
average of those numbers.

def main():
print(''let’s find the average of three

 numbers'')
x,y,z = eval(input(''Input three numbers

 separated by a coma: ''))
average = (x+y+z) / 3
print(''The average of those numbers is '',

 average)

main()

Input Statement with multiple assignment

 28

Take a look at the following interaction with the Python interpreter:

>>> ans = eval(input(“Enter an expression:”))
Enter an expression: 12-6*2-6/2
>>> print(ans)
-3

Danger: when we evaluate user’s input, we are essentially allowing
the user to enter a portion of our program!
Someone could exploit this ability to enter malicious instructions
(capture private information or delete files on the computer).
In computer security it is called a code injection attack.

Danger of eval

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

