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CSI31 Lecture 3

Topics:
2.1 The Software Development Process
2.3 Elements of Program
2.4 Output Statements
2.5 Asssignment Statements
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications

Create a design 

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 
- figure out exactly what is the problem to be solved

Determine specifications

Create a design 

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications - describe exactly what your program will 
do (not how it will work, but what it will accomplish)

  (for simple programs: what is the input/output, how they relate 
to each other)

Create a design 

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications

Create a design - formulate overall structure of the program (how 
the program will work)

- algorithms are usually written in pseudocodes

Implement the design

Test/Debug the program

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications

Create a design 

Implement the design 
- translate the algorithm into a computer language

Test/Debug the program

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications

Create a design 

Implement the design

Test/Debug the program 
- see if it works as expected (run on as many different inputs as 

you can; you should try everything you can think of that might 
«break» your program — testing )

- check for errors (bugs) – fix them – debugging

Maintain the program

2.1 The Software Development Process
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Stages of the process of creating a program:

Analyze the problem 

Determine specifications

Create a design 

Implement the design

Test/Debug the program

Maintain the program - continue developing/updating the program 
in response to the needs of your users.

2.1 The Software Development Process
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Example

Let's go through the steps of the software development process 
with the following example:

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters.

2.1 The Software Development Process
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Example

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters. 

2.1 The Software Development Process

Analisys: (analyze the problem)
     I need a program that measures the area of a rectangular room. 
     I'll be given length and width. In inches.
     The output should be the area in square meters. 
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Example

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters. 

2.1 The Software Development Process

Analisys: (analyze the problem)
     I need a program that measures the area of a rectangular room. 
     I'll be given length and width. In inches.
     The output should be the area in square meters. 

Determine specifications: program will:
● notify the user of what it can do,
● ask to input the length in inches
● ask to input the width in inches
● calculate the area
● output the result
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Example

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters. 

2.1 The Software Development Process

Design an algorithm:
● input the length of the room
● input the width of the room
● calculate A= (W * 2.54 * 0.01) * (L * 2.54 * 0.01)
● output area
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Example

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters. 

2.1 The Software Development Process

Implementation: 
I google'ed for the conversion from inches to meters, and found the 
following:

1 meter = 100 centimeters (or 1 centimeter is 0.01 meters)
1 inch = 2.54 centimeters

Thus if I have n inches, it will be n * 2.54 centimeters, and n * 2.54 * 
0.01 meters.
The formula for the area of the rectangle is A = W * L.
So the final formula for the area in meters is 
         A = (W * 2.54 * 0.01) * (L * 2.54 * 0.01)
          see the program area.py
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Example

I'd like to write a program that measures the area of a rectangular 
room. I assume that the input data will be in inches and I'd like to 
output result in square meters. 

2.1 The Software Development Process

Test/Debug the program: 
    test on several inputs (0,0), (100,100), (1000,1000), (4,5)

Maintenance: 
not needed right now (possibly in the future)
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Names (identifiers)

we give names to modules (files), to functions, to variables. 
Technically these names are called identifiers.

Python has some rules about how identifiers are formed:
must begin with a letter or underscore (''_''), may be followed by 

any sequence of letters, digits or underscores, but no spaces, 
points, commas, .....

legal names:
counter

x2
x2_y

ToGoThere
_234brush

illegal names:
x.y

net pay
10monkeys
_my-counter

2.3 Elements of Programs
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Names (identifiers)

! Identifiers are case-sensitive, thus Counter, counter, counTer, 
COUNTER are different names

! Some identifiers are part of the Python itself (they are reserved 
words), cannot be used as ordinary identifiers (see Table 2.1 on 
page 32)

2.3 Elements of Programs
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Expressions

the fragment of a code that produce or calculate new data is called 
expression.

A simplest kind of expression is literal:
5 in x = 5  2.4 in y = 2.4 
True in flag = True 
Hello in word = ''Hello'' (string literal)

more complex and interesting expressions are constructed by 
combining simpler expressions with operators, and variables.

Operators for numbers: *, +, -, /, **.      ( 2 ** 4 = 24)

         example: (((x+3) * (y-2)) ** 2 + 1023) / 5.4

2.3 Elements of Programs
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Expressions

Expressions are the fragments of a program that produce data, and 
are composed of literals, variables and operators.

For more information on operators see 
Python documentation -> Language Reference -> Expressions 

If Python cannot find a value – it reports a NameError.
(in the interactive window try to type in :

>>> print(x)
and see what will be the response)

2.3 Elements of Programs
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Command print

Let's take a look at printing statements that display information on 
the screen:

Syntax of the print statements:
print()                   -  will produce a blank line of output
print(<expr>)
print(<expr_1>, <expr_2>, ..., <expr_n>) - 
sequence of expressions

2.4 Output Statements
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The basic assignment statement's form:
<variable> = <expr>          

identifier expression

example: x = 9.8 * x * (32 + x)

A variable can be assigned values many times.
x = 1000
x = 4+15
x = 4/5

   - it always returns the value of the most recent assignment 
    (each time variable switches to refer to the new value – Python 
works this way)

2.5 Assignment Statements
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2.5 Assignment Statements

Variable as box

10x

Before

x = x+1 11

After

x
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2.5 Assignment Statements

x 10 x = x+1 10

11

x

Before After

Variable as sticky note (Python)
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Garbage collection

When a value is no longer referred to by any variable, it is no 
longer useful. Python will automatically clear these values out of 
memory – garbage collection.
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Simultaneous Assignment

- an alternative form of the assignment statement that allows to 
calculate several values at the same time

syntax:   
<var_1>, <var_2>, ... <var_n> = <expr_1>, <expr_2>, ..., <expr_n>

semantics: tells the Python to evaluate all the expressions on the 
right-hand side and then assign these values to the corresponding 
variables named on the left-hand side.

Example: sum, diff = 4+3, 4-3
      sum is 7, diff is 1

2.5 Assignment Statements
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Simultaneous Assignment

Simultaneous assignment can be used for quick swapping of 
values.

Example:  Assume that x = 4, y = 6 – and we want to swap their 
values. 
We will type in:

x, y = y, x

Otherwise we will have to do the following:
temp = y
y = x
x = temp

Word of caution: do not do this in C++

2.5 Assignment Statements
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Input statement is used to get some information from the user of the 
program and store into a variable.
(for this we use an assignment statement along with a special 
expression called input)

syntax:   
<variable> = input(<prompt>) (assignment of a string of characters)
<variable> = eval(input(<prompt>))   (assignment of a number)

prompt is an expression that serves to prompt the user for input 
 (almost always a string literal)

Input Statements
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another example: get three values from the user and find the 
average of those numbers.

def main():
print(''let’s find the average of three

          numbers'')
x,y,z = eval(input(''Input three numbers

                        separated by a coma: ''))
average = (x+y+z) / 3
print(''The average of those numbers is '',

         average)

main()

Input Statement with multiple assignment
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Take a look at the following interaction with the Python interpreter:

>>> ans = eval(input(“Enter an expression:”))
Enter an expression: 12-6*2-6/2
>>> print(ans)
-3

Danger: when we evaluate user’s input, we are essentially allowing 
the user to enter a portion of our program!
Someone could exploit this ability to enter malicious instructions 
(capture private information or delete files on the computer).
In computer security it is called a code injection attack.

Danger of eval
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