
CSI30

Chapter 3. The Fundamentals: Algorithms, the
Integers, and Matrices

3.1 Sorting. Greedy Algorithms.

1

CSI303.1 Sorting

Ordering the elements of a list is a problem that occurs in many contexts.

sorting is putting elements into a list in which the elements are in
increasing (or decreasing) order.

2

CSI303.1 Sorting

Ordering the elements of a list is a problem that occurs in many contexts.

sorting is putting elements into a list in which the elements are in
increasing (or decreasing) order.
Example 1:
Given a list {1, 5, 2, 7, 3, 4}, the sorted list will be {1, 2, 3, 4, 5, 7}
Given a list {a, g, s, d, f, p} the sorted list will be {a, d, f, g, p, s}

3

CSI303.1 Sorting

Ordering the elements of a list is a problem that occurs in many contexts.

sorting is putting elements into a list in which the elements are in
increasing (or decreasing) order.
Example 1:
Given a list {1, 5, 2, 7, 3, 4}, the sorted list will be {1, 2, 3, 4, 5, 7}
Given a list {a, g, s, d, f, p} the sorted list will be {a, d, f, g, p, s}

There are many sorting algorithms. Some algorithms are easy to
implement, some a more efficient, some take advantage of particular
computer architecture, and so on.

Some of the names:
Bubble sort
Insertion sort
Merge sort
Selection sort
Quicksort

4

CSI303.1 Bubble sort

Let's consider Bubble sort.
It is a simplest one, but not an efficient algorithm

idea: compares adjacent elements and interchanges them if necessary

5

CSI303.1 Bubble sort

Let's consider Bubble sort.
It is a simplest one, but not an efficient algorithm

idea: compares adjacent elements and interchanges them if necessary

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

6

CSI303.1 Bubble sort

Let's consider Bubble sort.
It is a simplest one, but not an efficient algorithm

idea: compares adjacent elements and interchanges them if necessary

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

summary: the bubble sort is done in n-1 passes.
During each pass we start at the beginning of the list and compare first
and second elements: if the first element is larger that the second – we
interchange them, and do nothing otherwise. Then we compare the
second and the third elements (and interchange them if the second
element is larger than the third one). And so on – till we reach the end of
the list.

7

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 8

0
5
7
1
3

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
3 > 1 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 9

0
5
7
1
3

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
3 > 1 ?

0
5
7
3
1
j=2

a2 > a3 ?
3 > 7 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 10

0
5
7
1
3

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
3 > 1 ?

0
5
7
3
1

0
5
7
3
1

j=2
a2 > a3 ?
3 > 7 ?

j=3
a3 > a4 ?
7 > 5 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 11

0
5
7
1
3

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
3 > 1 ?

0
5
7
3
1

0
5
7
3
1

0
7
5
3
1

j=2
a2 > a3 ?
3 > 7 ?

j=3
a3 > a4 ?
7 > 5 ?

j=4=n-i
a3 > a4 ?
7 > 5 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 12

0
5
7
1
3

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

First pass (i=1):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
3 > 1 ?

0
5
7
3
1

0
5
7
3
1

0
7
5
3
1

j=2
a2 > a3 ?
3 > 7 ?

j=3
a3 > a4 ?
7 > 5 ?

j=4=n-i
a3 > a4 ?
7 > 5 ?

7
0
5
3
1

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 13

7
0
5
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 14

7
0
5
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

7
0
5
3
1
j=2

a2 > a3 ?
3 > 5 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 15

7
0
5
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

7
0
5
3
1

7
0
5
3
1

j=2
a2 > a3 ?
3 > 5 ?

j=3=n-i
a3 > a4 ?
5 > 0 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 16

7
0
5
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Second pass (i=2):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

7
0
5
3
1

7
0
5
3
1

7
5
0
3
1

j=2
a2 > a3 ?
3 > 5 ?

j=3=n-i
a3 > a4 ?
5 > 0 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 17

7
5
0
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 18

7
5
0
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

7
5
0
3
1

j=2=n-i
a2 > a3 ?
3 > 0 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 19

7
5
0
3
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Third pass (i=3):
a5

a4

a3

a2

a1

j=1
a1 > a2 ?
1 > 3 ?

7
5
0
3
1

7
5
3
0
1

j=2=n-i
a2 > a3 ?
3 > 0 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 20

7
5
3
0
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):
a5

a4

a3

a2

a1

j=1=n-i
a1 > a2 ?
1 > 0 ?

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 21

7
5
3
0
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):
a5

a4

a3

a2

a1

j=1=n-i
a1 > a2 ?
1 > 0 ?

7
5
3
1
0

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order} 22

7
5
3
0
1

Example 2: Let's see the work of the Bubble sort on the list {3, 1, 7, 5, 0}

Fourth pass (i=4):
a5

a4

a3

a2

a1

j=1=n-i
a1 > a2 ?
1 > 0 ?

7
5
3
1
0

7
5
3
1
0

Stop

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?

23

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?
for i=1 n-1
for i=2 n-2
for i=3 n-3
....
for i=n-1 n-(n-1)

24

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?
for i=1 n-1
for i=2 n-2
for i=3 n-3
....
for i=n-1 n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) =

25

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?
for i=1 n-1
for i=2 n-2
for i=3 n-3
....
for i=n-1 n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1+2+3+4+...(n-1))=

26

i=1 i=2 i=3 i=4 i=n-1

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?
for i=1 n-1
for i=2 n-2
for i=3 n-3
....
for i=n-1 n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1+2+3+4+...(n-1))=

n2 – n – (1+(n-1)) ⋅ =
27

i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

n−1
2

CSI303.1 Bubble sort

procedure bubblesort(a1,...,an:real numbers with n ≥ 2)
for i := 1 to n-1

for j := 1 to n-i
if aj > aj+1 then interchange aj and aj+1

{a1, a2, ..., an is in increasing order}

How many iterations (comparisons) are performed on an n-element list?
for i=1 n-1
for i=2 n-2
for i=3 n-3
....
for i=n-1 n-(n-1)

Therefore we have the following sum:
(n-1) + (n-2) + (n-3) + (n-4) + ... + (n-(n-1)) = (n-1)*n – (1+2+3+4+...(n-1))=

n2 – n – (1+(n-1)) ⋅ = n2/2 – n/2 - quadratic
28

i=1 i=2 i=3 i=4 i=n-1

arithmetic
progression

n−1
2

CSI303.1 Insertion sort
Now, let's consider Insertion sort.
It is a simple algorithm, but still not an efficient one usually

29

CSI303.1 Insertion sort
Now, let's consider Insertion sort.
It is a simple algorithm, but still not an efficient one usually

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

30

CSI303.1 Insertion sort
Now, let's consider Insertion sort.
It is a simple algorithm, but still not an efficient one usually

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

summary: insertion sort starts with the second element.
It compares this element to the first one, and if it is smaller than the first
one – inserts it in front of the first one (shifts the first one to the place of
the second one), and does nothing otherwise.
Then it takes the third element and compares it with the first one and the
second one and inserts it into a correct position (also shifts), if needed.
And so on. 31

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6

32

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6

 m=0 a2=a1

33

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6
 m=0 a2=a1

34

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0

35

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0
j=3:
 i=1 0, 7, 3, 2, 6

36

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0
j=3:
 i=1 0, 7, 3, 2, 6
 i=2 m=3

37

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0
j=3:
 i=1 0, 7, 3, 2, 6 0, 7, 3, 2, 6

38

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0
j=3:
 i=1 0, 7, 3, 2, 6 0, 7, 3, 2, 6 0, 7, 7, 2, 6
 i=2 m=3 a3=a2

39

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=2:
 i=1 7, 0, 3, 2, 6 7, 0, 3, 2, 6 7, 7, 3, 2, 6 0, 7, 3, 2, 6
 m=0 a2=a1 a1=m=0
j=3:
 i=1 0, 7, 3, 2, 6 0, 7, 3, 2, 6 0, 7, 7, 2, 6 0, 3, 7, 2, 6
 i=2 m=3 a3=a2 a2=m=3
procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order} 40

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6

41

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6 0, 3, 7, 2, 6
 i=2 m=2 a4=a3,a3=a2

42

1st2nd

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6 0, 3, 7, 2, 6 0, 3, 3, 7, 6
 i=2 m=2 a4=a3,a3=a2

43

1st2nd

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6 0, 3, 7, 2, 6 0, 3, 3, 7, 6 0, 2, 3, 7, 6
 i=2 m=2 a4=a3,a3=a2 a2=m=2
j=5:
 i=1 0, 2, 3, 7, 6

44

1st2nd

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6 0, 3, 7, 2, 6 0, 3, 3, 7, 6 0, 2, 3, 7, 6
 i=2 m=2 a4=a3,a3=a2 a2=m=2
j=5:
 i=1 0, 2, 3, 7, 6 0, 2, 3, 7, 6
 i=4 m=6 a5=a4

45

1st2nd

procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order}

CSI303.1 Insertion sort
Example 3:
Let's see how insertion sort works on the list {7, 0, 3, 2, 6}

j=4:
 i=1 0, 3, 7, 2, 6 0, 3, 7, 2, 6 0, 3, 3, 7, 6 0, 2, 3, 7, 6
 i=2 m=2 a4=a3,a3=a2 a2=m=2
j=5:
 i=1 0, 2, 3, 7, 6 0, 2, 3, 7, 6 0, 2, 3, 7, 7 0, 2, 3, 6, 7
 i=4 m=6 a5=a4 a4=m=6
procedure insertionsort(a1,...,an:real numbers with n ≥ 2)
for j := 2 to n

i : = 1
while aj > ai

i := i+1
m := aj

for k := 0 to j-i-1
aj-k := aj-k-1

ai := m
{a1, a2, ..., an is in increasing order} 46

1st2nd

CSI303.1 Greedy Algorithms

optimization problem – is a computational problem in which the goal is to
find the “best” of all possible solutions.

“best” is different from problem to problem, for example:
● find a shortest route from city A to city B
● find a fastest route from city A to city B

47

CSI303.1 Greedy Algorithms

optimization problem – is a computational problem in which the goal is to
find the “best” of all possible solutions.

“best” is different from problem to problem, for example:
● find a shortest route from city A to city B
● find a fastest route from city A to city B

A simplest approach: select the “best” choice at each step

48

CSI303.1 Greedy Algorithms

optimization problem – is a computational problem in which the goal is to
find the “best” of all possible solutions.

“best” is different from problem to problem, for example:
● find a shortest route from city A to city B
● find a fastest route from city A to city B

A simplest approach: select the “best” choice at each step

Algorithms that make what seems to be the “best” choice at each step are
called greedy algorithms.

- they often lead to a solution of optimization problem.

49

CSI303.1 Greedy Algorithms

optimization problem – is a computational problem in which the goal is to
find the “best” of all possible solutions.

“best” is different from problem to problem, for example:
● find a shortest route from city A to city B
● find a fastest route from city A to city B

A simplest approach: select the “best” choice at each step

Algorithms that make what seems to be the “best” choice at each step are
called greedy algorithms.

- they often lead to a solution of optimization problem.

Once we know that a greedy algorithm finds a feasible solution, we need
to determine whether it has found an optimal solution. To do this we:
● prove that the solution is optimal, or
● show that there is a counterexample where the algorithm yields a non-
optimal solution.

50

CSI303.1 Greedy Algorithms

Example 4:
Make n cents change with quarters (q), nickels (c), dimes (d), and
pennies (p), using the least total number of coins.

51

CSI303.1 Greedy Algorithms

Example 4:
Make n cents change with quarters (q), nickels (c), dimes (d), and
pennies (p), using the least total number of coins.

A greedy algorithm:
Let's try to make the a locally optimal choice at each step: at each step
we choose the coin of largest denomination possible to add to the pile of
change without exceeding n cents.

52

CSI303.1 Greedy Algorithms

Example 4:
Make n cents change with quarters (q), nickels (c), dimes (d), and
pennies (p), using the least total number of coins.

A greedy algorithm:
Let's try to make the a locally optimal choice at each step: at each step
we choose the coin of largest denomination possible to add to the pile of
change without exceeding n cents.

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

53

CSI303.1 Greedy Algorithms

Example 4:
Make n cents change with quarters (q), nickels (c), dimes (d), and
pennies (p), using the least total number of coins.

A greedy algorithm:
Let's try to make the a locally optimal choice at each step: at each step
we choose the coin of largest denomination possible to add to the pile of
change without exceeding n cents.

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

- presented algorithm leads to an optimal solution (solves optimization
problem) in the sense that it uses the least number of coins. 54

CSI303.1 Greedy Algorithms

Let's see how the presented algorithm works for n=85

55

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

56

25

Total: 25

Let's see how the presented algorithm works for n=85

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

57

25 25

Total: 25 50

Let's see how the presented algorithm works for n=85

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

58

25 25 25

Total: 25 50 75

Let's see how the presented algorithm works for n=85

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

59

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

60

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

Let's see how the presented algorithm works for n=98

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 61

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25

Total: 25

Let's see how the presented algorithm works for n=98

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 62

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25 25

Total: 25 50

Let's see how the presented algorithm works for n=98

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 63

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25 25 25

Total: 25 50 75

Let's see how the presented algorithm works for n=98

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 64

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=98

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 65

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25 25 25 10

Total: 25 50 75 85 95

Let's see how the presented algorithm works for n=98

10

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents} 66

25 25 25 10

Total: 25 50 75 85

Let's see how the presented algorithm works for n=85

25 25 25 10

Total: 25 50 75 85 95 96 97 98

Let's see how the presented algorithm works for n=98

10 1 1 1

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

- presented algorithm leads to an optimal solution (solves optimization
problem) in the sense that it uses the least number of coins.

It is not enough to present few examples to show that the algorithm leads
to an optimal solution. We should present a proof (which we won't see in
here, but if you are curious – see the book, pages 175-176) .

67

CSI303.1 Greedy Algorithms

procedure change(n: positive integer; c1, c2, c3, ..., cr : values of
 denominations of coins, where c1 > c2 > c3 > ... > cr

for i := 1 to r
while n ≥ ci

add a coin with value ci to the change
n := n-ci

{the pile has change of n cents}

- presented algorithm leads to an optimal solution (solves optimization
problem) in the sense that it uses the least number of coins.

It is not enough to present few examples to show that the algorithm leads
to an optimal solution. We should present a proof (which we won't see in
here, but if you are curious – see the book, pages 175-176) .

! There are sets of coins (for example, quarters, dimes and pennies) for
which the presented greedy algorithm doesn't produce change using the
fewest coins possible.

68

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

