6.6 Number representation
6.7 Fast exponentiation
6.8 Introduction to cryptography

6.7 Representation of Integers

In our everyday life we use decimal notation to express integers
Note: decimal notation and decimal numbers are two different terms.
The other ones you probably have heard of are: binary, HEX (hexadecimal), and maybe octal.

6.7 Representation of Integers

In our everyday life we use decimal notation to express integers
Note: decimal notation and decimal numbers are two different terms.
The other ones you probably have heard of are: binary, HEX (hexadecimal), and maybe octal.
[Theorem]
Let $b \in \mathbf{Z}^{+}$and $b>1$. Then if n is a positive integer, it can be expressed uniquely in the form $n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where k is a nonnegative integer, $a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$.

A proof of this theorem can be constructed using mathematical induction (not presented here)
$n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$ is called base b expansion of n

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 10 gives decimal notation.

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k+}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 10 gives decimal notation.
Example: 567 stands for 5 hundreds +6 tens +7 ones

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 10 gives decimal notation.
Example: 567 stands for 5 hundreds +6 tens +7 ones

$$
\begin{aligned}
567 & =5 * 10^{2}+6 * 10^{1}+7 * 10^{0}= \\
& =500+60+7
\end{aligned}
$$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 10 gives decimal notation.
Example: 567 stands for 5 hundreds +6 tens +7 ones

$$
\begin{aligned}
567 & =5 * 10^{2}+6 * 10^{1}+7 * 10^{0}= \\
& =500+60+7
\end{aligned}
$$

digits: $0,1,2,3,4,5,6,7,8,9$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 2 gives binary expansions of integers. digits: 0, 1

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(1011011001)_{2}=$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(1011011001)_{2}=1+$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(1011011001)_{2}=1+0 \cdot 2$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(1011011001)_{2}=1+0 \cdot 2+0 \cdot 2^{2}+$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(1011011001)_{2}=1+0 \cdot 2+0 \cdot 2^{2}+1 \cdot 2^{3}+$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.

$$
\begin{aligned}
& n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k} \\
& (1011011001)_{2}=1+0 \cdot 2+0 \cdot 2^{2}+1 \cdot 2^{3}+1 \cdot 2^{4}+0 \cdot 2^{5}+1 \cdot 2^{6}+1 . \\
& 2^{7}+0 \cdot 2^{8}+1 \cdot 2^{9}=
\end{aligned}
$$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.

$$
\begin{aligned}
& n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k} \\
& (1011011001)_{2}=1+0 \cdot 2+0 \cdot 2^{2}+1 \cdot 2^{3}+1 \cdot 2^{4}+0 \cdot 2^{5}+1 \cdot 2^{6}+1 . \\
& 2^{7}+0 \cdot 2^{8}+1 \cdot 2^{9}=1+8+16+64+128+512
\end{aligned}
$$

Binary Expansion

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 2 gives binary expansions of integers.
digits: 0, 1
binary expansions are used by computers to represent integers and do arithmetic with them.

Example: What is the decimal form (expansion) of the integer that has (10 1101 1001) $)_{2}$ as its binary expansion?

Solution: using the highlighted formula and starting from the right, i.e.

$$
\begin{aligned}
& n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k} \\
& (1011011001)_{2}=1+0 \cdot 2+0 \cdot 2^{2}+1 \cdot 2^{3}+1 \cdot 2^{4}+0 \cdot 2^{5}+1 \cdot 2^{6}+1 . \\
& 2^{7}+0 \cdot 2^{8}+1 \cdot 2^{9}=1+8+16+64+128+512=729_{10}
\end{aligned}
$$

Answer: $(1011011001)_{2}=729_{10}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k+} a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 16 gives hexadecimal expansions of integers.

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e. $n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F 0 B)_{16}=$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F 0 B)_{16}=11+$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F O B)_{16}=11+0 \cdot 16+$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F 0 B)_{16}=11+0 \cdot 16+15 \cdot 16^{2}+13 \cdot 16^{3}+3 \cdot 16^{4}=$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F O B)_{16}=11+0 \cdot 16+15 \cdot 16^{2}+13 \cdot 16^{3}+3 \cdot 16^{4}=11+3840+$ $53248+196608$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers. digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the decimal expansion of the hexadecimal expansion of (3DFOB) ${ }_{16}$?

Solution: using the highlighted formula and starting from the right, i.e.
$n=a_{0}+a_{1} b^{1}++a_{2} b^{2}+\ldots+a_{k-1} b^{k-1}+a_{k} b^{k}$
$(3 D F O B)_{16}=11+0 \cdot 16+15 \cdot 16^{2}+13 \cdot 16^{3}+3 \cdot 16^{4}=11+3840+$ $53248+196608=253707_{10}$

Answer: $(3 D F 0 B)_{16}=253707_{10}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?
Solution: divide by 16, set aside the remainder; the quotient of division divide by 16 and set aside the remainder, and so on, till the quotient is 1 (or 0).

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?
Solution: divide by 16, set aside the remainder; the quotient of division divide by 16 and set aside the remainder, and so on, till the quotient is 1 (or 0).
$4678 \div 16=292 R 6$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?
Solution: divide by 16, set aside the remainder; the quotient of division divide by 16 and set aside the remainder, and so on, till the quotient is 1 (or 0).
$4678 \div 16=292 R 6$
$292 \div 16=18 R 4$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?
Solution: divide by 16, set aside the remainder; the quotient of division divide by 16 and set aside the remainder, and so on, till the quotient is 1 (or 0).
$4678 \div 16=292 R 6$
$292 \div 16=18 R 4$
$18 \div 16=1 R 2$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$,
where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.
Choosing the base b to be 16 gives hexadecimal expansions of integers.
digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ 101112131415

Example: What is the hexadecimal expansion of the decimal number 4678?
Solution: divide by 16, set aside the remainder; the quotient of division divide by 16 and set aside the remainder, and so on, till the quotient is 1 (or 0).
$4678 \div 16=292 R 6$ $292 \div 16=18 R 4$ $18 \div 16=1 R 2$

Now, starting from the end (from the last quotient): (1 24 6) 16
Answer: $(4678)_{10}=(1246)_{16}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers. digits: $0,1,2,3,4,5,6,7$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers. digits: $0,1,2,3,4,5,6,7$

Example: Find the decimal expansion of $(1347)_{8}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.
digits: $0,1,2,3,4,5,6,7$
Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.
digits: $0,1,2,3,4,5,6,7$
Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.
digits: $0,1,2,3,4,5,6,7$
Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512=743$
Answer: $(1347)_{8}=743$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers. digits: $0,1,2,3,4,5,6,7$

Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512=743$
Answer: $(1347)_{8}=743$
Example: Find the octal expansion of (47) ${ }_{10}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.
digits: $0,1,2,3,4,5,6,7$
Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512=743$
Answer: $(1347)_{8}=743$
Example: Find the octal expansion of (47) ${ }_{10}$
Solution:
$47 \div 8=5 R 7$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers.
digits: $0,1,2,3,4,5,6,7$
Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512=743$
Answer: $(1347)_{8}=743$
Example: Find the octal expansion of (47) ${ }_{10}$
Solution:
$47 \div 8=5 R 7$
$5 \div 8=0 R 5$
or $\begin{aligned} & 47 \frac{8}{5} \\ & 7-0 \left\lvert\, \frac{8}{5}\right. \\ & 0\end{aligned}$

Let $b \in \mathbf{Z}^{+}$and $b>1 ; n \in \mathbf{Z}^{+}, n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{2} b^{2}+a_{1} b^{1}+a_{0}$, where $k \in \mathbf{Z}^{+}$and $k \geq 0 ; 0 \leq a_{i}<b, i=0, \ldots, k$, and $a_{k} \neq 0$.

Choosing the base b to be 8 gives octal expansions of integers. digits: $0,1,2,3,4,5,6,7$

Example: Find the decimal expansion of $(1347)_{8}$
Solution:
$(1347)_{8}=7+4 \cdot 8+3 \cdot 8^{2}+1 \cdot 8^{3}=7+32+192+512=743$
Answer: $(1347)_{8}=743$
Example: Find the octal expansion of (47) ${ }_{10}$
Solution:
$47 \div 8=5 R 7$
$5 \div 8=0 R 5$
Answer: $(057)_{8}=(57)_{8}$

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

Example:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed),

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:

11101010011111

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:

There is a nice table allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:

11101010011111

3 A 9

There is a nice table that allows to speed up the process of "conversions", but be very careful when using it. There are lots of nuances.

TABLLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Example 5:

to convert (11 10101001 1111) $)_{2}$ into hexadecimal notation we group the binary digits into groups of four (from the right), and add initial zeros at the start (if needed), use the table, write the hexadecimal notation:
therefore,
$(11101010011111)_{2}=(3 \mathrm{~A} 9 \mathrm{~F})_{16}$

Modular Exponentiation

In cryptography it is important to be able to find b^{n} efficiently, where b, n are large integers.

We can use an algorithm that employs the binary expansion of the exponent n. To compute b^{n}, the algorithm computes $b, b^{2},\left(b^{2}\right)^{2},\left(b^{4}\right)^{2}, \ldots$ till some point, and then multiplies all of them.

Modular Exponentiation

In cryptography it is important to be able to find b^{n} efficiently, where b, n are large integers.

We can use an algorithm that employs the binary expansion of the exponent n. To compute b^{n}, the algorithm computes $b, b^{2},\left(b^{2}\right)^{2},\left(b^{4}\right)^{2}, \ldots$ till some point, and then multiplies all of them.

Input: Positive integers x and y. Output: $\mathrm{x}^{\text {y }}$
procedure fastExponentiation(x,y)

$\mathrm{p}:=1$	$/ / \mathrm{p}$ holds the partial result.
$\mathrm{s}:=\mathrm{x}$	$/ / \mathrm{s}$ holds the current $\left(\mathrm{x}^{2}\right)^{j} \mathrm{t}$
$\mathrm{r}:=\mathrm{y}$	$/ / \mathrm{r}$ is used for binary expansion of y

$$
\mathrm{S}:=\mathrm{S} \cdot \mathrm{~S}
$$

End-while

$$
r:=r \operatorname{div} 2
$$

Return(p)

Example: Find 7^{16}

$$
p=1, s=7, r=16
$$

```
p := 1
s := x
\(r:=y\)
While \((r>0)\)
If \((r \bmod 2=1)\)
    \(\mathrm{p}:=\mathrm{p} \cdot \mathrm{s}\)
    \(\mathrm{s}:=\mathrm{s} \cdot \mathrm{s}\)
        \(r:=r \operatorname{div} 2\)
End-while
Return (p)
```


Example: Find $7{ }^{16}$

$$
\begin{aligned}
& p=1, s=7, r=16 \\
& 16 \bmod 2=0 \\
& s=7^{*} 7=49 \\
& r=16 \operatorname{div} 2=8
\end{aligned}
$$

```
p := 1
s := x
r := y
While \((r>0)\)
    \(\mathrm{s}:=\mathrm{s} \cdot \mathrm{s}\)
End-while
Return (p)
```

Example: Find 7^{16}

$$
p=1, s=7, r=16
$$

$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$

```
p := 1
s := x
\(r:=y\)
while ( \(r>0\) )
        If \((r \bmod 2=1)\)
            \(p:=p \cdot s\)
        \(\mathrm{s}:=\mathrm{s} \cdot \mathrm{s}\)
        \(r:=r \operatorname{div} 2\)
End-while
Return (p)
```

Example: Find 7^{16}

$$
p=1, s=7, r=16
$$

$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$\mathrm{r}=8 \operatorname{div} 2=4$

```
\(\mathrm{p}:=1\)
\(\mathrm{~s}:=\mathrm{x}\)
\(\mathrm{r}:=\mathrm{y}\)
while \(\left(\begin{array}{l}r>0) \\ \text { If }(r \bmod 2=1)\end{array}\right.\)
    \(\mathrm{s}:=\mathrm{s} \cdot \mathrm{s}\)
    \(r:=r \operatorname{div} 2\)
End-while
Return (p)
```


Example: Find 7^{16}

$$
\begin{aligned}
& p=1, s=7, r=16 \\
& 16 \bmod 2=0 \\
& s=7^{*} 7=49 \\
& r=16 \operatorname{div} 2=8 \\
& p=1, s=49, r=8 \\
& 8 \bmod 2=0 \\
& s=49^{*} 49=2401 \\
& r=8 \operatorname{div} 2=4 \\
& p=1, s=2401, r=4
\end{aligned}
$$

Example: Find 7^{16}

$$
\begin{aligned}
& p=1, s=7, r=16 \\
& 16 \bmod 2=0 \\
& \mathrm{~s}=7 * 7=49 \\
& r=16 \operatorname{div} 2=8 \\
& p=1, s=49, r=8 \\
& 8 \bmod 2=0 \\
& s=49 * 49=2401 \quad 7^{4} \\
& r=8 \operatorname{div} 2=4 \\
& p=1, s=2401, r=4 \\
& 4 \bmod 2=0 \\
& s=2401 * 2401=5764801 \\
& r=4 \operatorname{div} 2=2
\end{aligned}
$$

Example: Find 7^{16}

$$
p=1, s=5764801, r=2
$$

$$
\begin{aligned}
& p=1, s=7, r=16 \\
& 16 \bmod 2=0 \\
& \mathrm{~s}=7 * 7=49 \\
& r=16 \operatorname{div} 2=8 \\
& p=1, s=49, r=8 \\
& 8 \bmod 2=0 \\
& \mathrm{~s}=49 * 49=2401 \\
& r=8 \operatorname{div} 2=4 \\
& p=1, s=2401, r=4 \\
& 4 \bmod 2=0 \\
& s=2401 * 2401=5764801 \\
& r=4 \operatorname{div} 2=2
\end{aligned}
$$

Example: Find 7^{16}
$p=1, s=7, r=16$
$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$\mathrm{r}=8 \operatorname{div} 2=4$
$p=1, s=2401, r=4$
$4 \bmod 2=0$
$s=2401 * 2401=5764801$
$r=4 \operatorname{div} 2=2$

$$
p=1, s=5764801, r=2
$$

$$
4 \bmod 2=0
$$

$$
s=5764801^{2}=33232930569601
$$

$$
r=2 \operatorname{div} 2=1
$$

```
\(\mathrm{p}:=1\)
s := x
\(r:=y\)
```



```
    \(\mathrm{s}:=\mathrm{s} \cdot \mathrm{s}\)
    \(r:=r \operatorname{div} 2\)
End-while
Return (p)
```

Example: Find 7^{16}
$p=1, s=7, r=16$
$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$\mathrm{r}=8 \operatorname{div} 2=4$
$p=1, s=2401, r=4$
$4 \bmod 2=0$
$s=2401 * 2401=5764801$
$r=4 \operatorname{div} 2=2$
$p=1, s=5764801, r=2$
$4 \bmod 2=0$
$\mathrm{s}=5764801^{2}=33232930569601 \quad 7^{16}$
$r=2 \operatorname{div} 2=1$
$p=1, s=33232930569601, r=1$

$$
\begin{aligned}
& \mathrm{p}:=1 \\
& \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { While }(r>0) \\
& \text { If }(r \bmod 2=1)
\end{aligned}
$$

$$
p:=p \cdot s
$$

$$
s:=s \cdot s
$$

$$
r:=r \operatorname{div} 2
$$

End-while Return (p)

Example: Find 7^{16}
$p=1, s=7, r=16$
$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$r=8 \operatorname{div} 2=4$
$p=1, s=2401, r=4$
$4 \bmod 2=0$
$s=2401 * 2401=5764801$
$r=4 \operatorname{div} 2=2$

$$
p=1, s=5764801, r=2
$$

$$
4 \bmod 2=0
$$

$$
s=5764801^{2}=33232930569601 \quad 7^{16}
$$

$$
r=2 \operatorname{div} 2=1
$$

$$
p=1, s=33232930569601, r=1
$$

$$
1 \bmod 2=1
$$

$$
\text { p = 1 * } 33232930569601
$$

$$
s=33232930569601^{2}=\ldots
$$

$$
r=1 \operatorname{div} 2=0
$$

```
\[
\begin{aligned}
& \mathrm{p}:=1 \\
& \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y}
\end{aligned}
\]
\[
\begin{aligned}
& \text { While }(r>0) \\
& \text { If }(r \bmod 2=1)
\end{aligned}
\]
\[
p:=p \cdot s
\]
\[
s:=s \cdot s
\]
\[
r:=r \operatorname{div} 2
\]
End-whịle
Return (p)
```

Example: Find 7^{16}
$p=1, s=7, r=16$
$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$r=8 \operatorname{div} 2=4$
$p=1, s=2401, r=4$
$4 \bmod 2=0$
$s=2401 * 2401=5764801$
$r=4 \operatorname{div} 2=2$

$$
p=1, s=5764801, r=2
$$

$$
4 \bmod 2=0
$$

$$
s=5764801^{2}=33232930569601 \quad 7^{16}
$$

$$
r=2 \operatorname{div} 2=1
$$

$$
p=1, s=33232930569601, r=1
$$

$$
1 \bmod 2=1
$$

$$
p=1 \text { * } 33232930569601
$$

$$
7^{16}
$$

$$
s=33232930569601^{2}=\ldots
$$

$$
r=1 \operatorname{div} 2=0
$$

```
                            While \((r>0)\) If \((r \bmod 2=1)\)
                        \(p:=p \cdot s\)
        \(s:=s \cdot s\)
        \(r:=r \operatorname{div} 2\)
    End-while
    Return (p)
```

Example: Find 7^{16}
$p=1, s=7, r=16$
$16 \bmod 2=0$
$\mathrm{s}=7^{*} 7=49$
$r=16 \operatorname{div} 2=8$
$p=1, s=49, r=8$
$8 \bmod 2=0$
$\mathrm{s}=49 * 49=2401$
$r=8 \operatorname{div} 2=4$
$p=1, s=2401, r=4$
$4 \bmod 2=0$
$s=2401 * 2401=5764801$
$r=4 \operatorname{div} 2=2$

Return(33 232930569 601)

$$
p=1, s=5764801, r=2
$$

$$
4 \bmod 2=0
$$

$$
s=5764801^{2}=33232930569601
$$

$$
r=2 \operatorname{div} 2=1
$$

$$
p=1, s=33232930569601, r=1
$$

$$
1 \bmod 2=1
$$

$$
p=1 \text { * } 33232930569601
$$

$$
s=33232930569601^{2}=\ldots
$$

$$
r=1 \operatorname{div} 2=0
$$

$$
\begin{aligned}
& \mathrm{p}:=1 \\
& \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y}
\end{aligned}
$$

$$
\text { while }(r>0)
$$

$$
\text { If }(r \bmod 2=1)
$$

$$
p:=p \cdot s
$$

$$
s:=s \cdot s
$$

$$
r:=r \operatorname{div} 2
$$

End-whīle
Return (p)

Modular Exponentiation

Example: Find 7^{16}

What does the algorithm do?
$16=(10000)_{2}=1 * 2^{4}+0 * 2^{3}+0 * 2^{2}+0 * 2^{1}+0 * 2^{0}$
Therefore $7^{16}=7^{1 * 2^{4}+0 * 2^{3}+0 * 2^{2}+0 * 2^{1}+0 * 2^{0}}=7^{2^{4}} * 7^{0} * 7^{0} * 7^{0} * 7^{0}$

Modular Exponentiation

In cryptography it is important to be able to find $b^{n} \bmod m$ efficiently, where b, n, and m are large integers.

As we have discussed, it is impractical to first compute b^{n} and then find its remainder when divided by m, because b^{n} will be a huge number.

Modular Exponentiation

In cryptography it is important to be able to find $b^{n} \bmod m$ efficiently, where b, n, and m are large integers.

As we have discussed, it is impractical to first compute b^{n} and then find its remainder when divided by m, because b^{n} will be a huge number.

Input: Positive integers x and y. Output: $\mathrm{x}^{y} \bmod \mathrm{n}$

```
p := 1 //p holds the partial result.
s := x //s holds the current ( }\mp@subsup{x}{}{2}\mp@subsup{)}{}{j
r := y //r is used to compute the binary expansion of y
```


$\mathrm{p}:=\mathrm{p} \cdot \mathrm{s} \bmod \mathrm{n}$
$s:=s \cdot s \bmod n$
$r:=r \operatorname{div} 2$

```
modifications from fast
exponentiation are shown
in pink
```

End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$

644=(10 10000100$)_{2}$

$$
\begin{aligned}
& \mathrm{p}:=1, \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y} \\
& \text { While }(\mathrm{r}>0 \text {) } \\
& \text { If }(\mathrm{rmod} 2=1) \\
& \mathrm{p}:=\mathrm{p} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& \mathrm{~s}:=\mathrm{s} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& \mathrm{r}:=\mathrm{r} \operatorname{div} 2 \\
& \text { End-while } \\
& \text { Return(p) }
\end{aligned}
$$

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2$!= 1, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$644=(1010000100)_{2}$
$\mathrm{p}:=1, \quad \mathrm{~s} \quad:=\mathrm{x}$
r
l
y While $(r>0)$
$\mathrm{s}:=\mathrm{s} \cdot \mathrm{s} \bmod \mathrm{n}$
$r:=r \operatorname{div} 2$
End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2!=1$, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$p=1, s=49, r=322$
$644=(1010000100)_{2}$

$$
\begin{aligned}
& \mathrm{p}:=1, \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y} \\
& \text { While }(r>0) \\
& \text { If }(r \bmod 2=1) \\
& \mathrm{p}:=\mathrm{p} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& \mathrm{~s}:=\mathrm{s} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& \mathrm{r}:=\mathrm{r} \operatorname{div} 2 \\
& \text { End-while } \\
& \text { Return(p) }
\end{aligned}
$$

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2!=1$, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$p=1, s=49, r=322$
$322 \bmod 2$!= 1, hence p is not updated $r=49^{2} \bmod 645=2401 \bmod 645=466$ $r=322 \operatorname{div} 2=161$
$644=(1010000100)_{2}$
While $\left(\begin{array}{l}r>0) \\ \text { If }(r \bmod 2=1) \\ p:=p \cdot s \bmod n\end{array}\right)$.
$\mathrm{s}:=\mathrm{s} \cdot \mathrm{s} \bmod \mathrm{n}$
$r:=r \operatorname{div} 2$
End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2!=1$, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$p=1, s=49, r=322$
$322 \bmod 2$!= 1 , hence p is not updated $r=49^{2} \bmod 645=2401 \bmod 645=466$ $r=322 \operatorname{div} 2=161$
$p=1, s=466, r=161$

while ($r>0$)
If $(r \bmod 2=1)$
p := p.s mod n
$\mathrm{s}:=\mathrm{s} \cdot \mathrm{s} \bmod \mathrm{n}$
$r:=r \operatorname{div} 2$
End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2!=1$, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$p=1, s=49, r=322$
$322 \bmod 2$!= 1, hence p is not updated $r=49^{2} \bmod 645=2401 \bmod 645=466$ $r=322 \operatorname{div} 2=161$
$p=1, s=466, r=161$
$161 \bmod 2=1$, hence p is updated
$p=1$ * $466 \bmod 645=466$
$\mathrm{s}=466^{2} \mathrm{mod} 645=436$
$r=161 \operatorname{div} 2=80$
$644=(1010000100)_{2}$

Example: Find $7^{644} \bmod 645$
$p=1, s=7, r=644$
$644 \bmod 2!=1$, hence p is not updated $\mathrm{s}=7 * 7 \bmod 645=49 \bmod 645=49$
$r=644 \operatorname{div} 2=322$
$p=1, s=49, r=322$
$322 \bmod 2!=1$, hence p is not updated
$r=49^{2} \bmod 645=2401 \bmod 645=466$
$r=322 \operatorname{div} 2=161$
$p=1, s=466, r=161$
$161 \bmod 2=1$, hence p is updated
$p=1$ * $466 \bmod 645=466$
$\mathrm{s}=466^{2} \bmod 645=436$
$r=161 \operatorname{div} 2=80$
$p=466, s=436, r=80$

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$644=(1010000100)_{2}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{p} \\
\mathrm{r} \\
:=1, \quad \mathrm{y}
\end{array} \mathrm{~s}:=\mathrm{x} \\
& \text { While (} r>0 \text {) } \\
& \text { If }(r \bmod 2=1) \\
& \mathrm{p}:=\mathrm{p} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& \mathrm{~s}:=\mathrm{s} \cdot \mathrm{~s} \bmod \mathrm{n} \\
& r:=r \operatorname{div} 2 \\
& \text { End-while } \\
& \text { Return(p) }
\end{aligned}
$$

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \mathrm{mod} 645=466$
$r=80 \operatorname{div} 2=40$
$644=(1010000100)_{2}$
$\mathrm{p}:=1, \quad \mathrm{~s} \quad:=\mathrm{x}$
r
l
y While $\left(\begin{array}{rl}r>0\end{array}\right)$
$\mathrm{s}:=\mathrm{s} \cdot \mathrm{s} \bmod \mathrm{n}$
$r:=r \operatorname{div} 2$
End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \mathrm{mod} 645=466$
$r=80 \operatorname{div} 2=40$
$p=466, s=466, r=40$

$$
\begin{aligned}
& \mathrm{p}:=1, \quad \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y}
\end{aligned}
$$

$$
\text { while }(r>0)
$$

$$
\text { If }(r \bmod 2=1)
$$

$$
\mathrm{p}:=\mathrm{p} \cdot \mathrm{~s} \bmod \mathrm{n}
$$

$$
s:=s \cdot s \bmod n
$$

$$
r:=r \operatorname{div} 2
$$

End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=80 \operatorname{div} 2=40$
$p=466, s=466, r=40$
$40 \bmod 2$!= 1 , hence p is not updated
$s=466^{2} \bmod 645=436$
$R=40 \operatorname{div} 2=20$
$644=(1010000100)_{2}$
While $(r>0)$
If $(r \bmod 2=1)$
$p:=p \cdot s \bmod n$
$\mathrm{s}:=\mathrm{s} \cdot \mathrm{s} \bmod \mathrm{n}$
$r:=r \operatorname{div} 2$
End-while
Return(p)

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=80 \operatorname{div} 2=40$
$p=466, s=466, r=40$
$40 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=466^{2} \bmod 645=436$
$\mathrm{R}=40 \operatorname{div} 2=20$
$p=466, s=436, r=20$

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=80 \operatorname{div} 2=40$
$p=466, s=466, r=40$
$40 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=466^{2} \bmod 645=436$
$\mathrm{R}=40 \operatorname{div} 2=20$
$p=466, s=436, r=20$
$20 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=20 \operatorname{div} 2=10$

$$
\begin{aligned}
& \mathrm{p}:=1, \quad \mathrm{~s}:=\mathrm{x} \\
& \mathrm{r}:=\mathrm{y}
\end{aligned}
$$

$$
\text { While }(r>0)
$$

$$
s:=s \cdot s \bmod n
$$

$$
r:=r \operatorname{div} 2
$$

End-while
Return (p)

Example: Find $7^{644} \bmod 645$
$p=466, s=436, r=80$
$80 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=80 \operatorname{div} 2=40$
$p=466, s=466, r=40$
$40 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=466^{2} \bmod 645=436$
$\mathrm{R}=40 \operatorname{div} 2=20$
$p=466, s=436, r=20$
$20 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=436^{2} \bmod 645=466$
$r=20 \operatorname{div} 2=10$
$p=466, s=466, r=10$

Example: Find $7^{644} \bmod 645$
$p=466, s=466, r=10$
$10 \bmod 2!=1$, hence p is not updated
$\mathrm{s}=466^{2} \bmod 645=436$
$r=10 \operatorname{div} 2=5$
$p=466, s=436, r=5$
$5 \bmod 2=1$, hence p is updated
$p=466$ * $436 \bmod 645=1$
$\mathrm{s}=436^{2} \bmod 645=466$
$r=5 \operatorname{div} 2=2$
$\mathrm{p}=1, \mathrm{~s}=466, \mathrm{r}=2$
2 mod 2 != 1, hence p is not updated
$\mathrm{s}=466^{2} \bmod 645=436$
$r=2 \operatorname{div} 2=1$
$p=1, s=436, r=1$

Example: Find $7^{644} \bmod 645$
$p=1, s=436, r=1$
$1 \bmod 2=1$, hence p is updated
$p=1$ * $436 \bmod 645=436$
$\mathrm{s}=436^{2} \bmod 645=466$
$r=1 \operatorname{div} 2=0$
$p=436, s=466, r=0$
STOP
Return(436)
$7^{644} \bmod 645=436$

$$
\begin{aligned}
& \mathrm{p}:=1, \quad s \quad:=x \\
& r:=y
\end{aligned}
$$

$$
\text { While }(r>0)
$$

$$
\text { If }(r \bmod 2=1)
$$

$$
\mathrm{p}:=\mathrm{p} \cdot \mathrm{~s} \bmod \mathrm{n}
$$

$$
s:=s \cdot s \bmod n
$$

$$
\mathrm{r}:=\mathrm{r} \operatorname{div} 2
$$

End-while

$$
\text { Return }(\mathrm{p})
$$

6.8 Introduction to cryptography

Cryptography is science of protecting and authenticating data and communication.
One important aspect: sending messages securely in the presence of eavesdroppers who can learn the transmitted information.

6.8 Introduction to cryptography

Cryptography is science of protecting and authenticating data and communication.
One important aspect: sending messages securely in the presence of eavesdroppers who can learn the transmitted information.

6.8 Introduction to cryptography

Often we transmit text messages. Therefore, we convert text message into an integer, then the "message" is encrypted and sent.

There are many possible ways to do the conversion.
Example: assume that the message contains only uppercase letters, space characters, and periods

A	01	N	14	-	27
B	02	0	15	.	28
C	03	P	16		
D	04	Q	17		
E	05	R	18		
F	06	S	19		
G	07	T	20		
H	08	U	21		
I	09	V	22		
J	10	W	23		
K	11	X	24		
L	12	Y	25		
M	13	Z	26		

not onto, but has to be one-to-one
6.8 Introduction to cryptography

Often we transmit text messages. Therefore, we convert text message into an integer, then the "message" is encrypted and sent.

There are many possible ways to do the conversion.
Example: assume that the message contains only uppercase letters, space characters, and periods

A	01	N	14	-	27
B	02	0	15	\cdot	28
C	03	P	16		
D	04	Q	17		
E	05	R	18		
F	06	S	19		
G	07	T	20		
H	08	U	21		
I	09	V	22		
J	10	W	23		
K	11	X	24		
L	12	Y	25		
M	13	Z	26		

H E L L O A L I C E .
0805121215011209030528
integer plaintext
6.8 Introduction to cryptography

Often we transmit text messages. Therefore, we convert text message into an integer, then the "message" is encrypted and sent.

There are many possible ways to do the conversion.
Example: assume that the message contains only uppercase letters, space characters, and periods

A	01	N	14	-	27
B	02	0	15	\cdot	28
C	03	P	16		
D	04	Q	17		
E	05	R	18		
F	06	S	19		
G	07	T	20		
H	08	U	21		
I	09	V	22		
J	10	W	23		
K	11	X	24		
L	12	Y	25		
M	13	Z	26		

$$
\begin{aligned}
& \text { H E L L O A L I C E . } \\
& 0805121215011209030528
\end{aligned}
$$

The mapping of text messages to numbers described above gives a function from strings of length n to integers with $2 n$ digits.

The translation of text messages to numbers need not be secure.

6.8 Introduction to cryptography

Modern cryptosystems rely on number theory in which the encryption and decryption procedures are mathematical functions whose input and output are integers.

To encrypt a plaintext message: compute a mathematical function with the integer plaintext m as the input and the ciphertext c as the output.

To decrypt: is to compute the inverse of the encryption process. Given a ciphertext c, the decryption process must produce the unique plaintext m whose encryption is c.

Let
\mathbf{M} : set of all possible plaintexts, $\mathbf{M} \subset \mathbf{Z}$
C: set of all ciphertexts then
Encryption is a function: $\mathbf{M} \rightarrow \mathbf{Z}$, with range \mathbf{C}

6.8 Introduction to cryptography

A simple cryptosystem

Assume that the set of all possible plaintexts come from $\mathbf{Z}_{\mathbf{N}}$ for some integer N .
Alice and Bob share a secret number $k \in \mathbf{Z}_{\mathbf{N}}$.
The security of their encryption scheme rests on the assumption that no one besides them knows the number k.

6.8 Introduction to cryptography

A simple cryptosystem
Assume that the set of all possible plaintexts come from $\mathbf{Z}_{\mathbf{N}}$ for some integer N .
Alice and Bob share a secret number $k \in \mathbf{Z}_{\mathbf{N}}$.
The security of their encryption scheme rests on the assumption that no one besides them knows the number k.

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$
To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$
6.8 Introduction to cryptography

A simple cryptosystem
Assume that the set of all possible plaintexts come from $\mathbf{Z}_{\mathbf{N}}$ for some integer N .
Alice and Bob share a secret number $k \in \mathbf{Z}_{\mathbf{N}}$.
The security of their encryption scheme rests on the assumption that no one besides them knows the number k.

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$
To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$
Simple encryption scheme requirements:
If $m_{1} \neq m_{2}$ and $m_{1}, m_{2} \in \mathbf{Z}_{\mathrm{N}}$ then $\left(m_{1}+k\right) \bmod N \neq\left(m_{2}+k\right) \bmod N$
(i.e. no two distinct plaintexts map to same ciphertext)

If $m \in \mathbf{Z}_{\mathrm{N}}$ then $(((m+k) \bmod N)-k) \bmod N=m$
(i.e. decryption scheme is inverse of encryption scheme)

6.8 Introduction to cryptography

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$

To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$

Example: let $\mathrm{N}=1028$
Alice wants to send a "message" 978 to Bob.

Bob

6.8 Introduction to cryptography

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$

To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$
Example: let $\mathrm{N}=1028$
Alice wants to send a "message" 978 to Bob.

6.8 Introduction to cryptography

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$

To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$

Example: let $\mathrm{N}=1028$
Alice wants to send a "message" 978 to Bob.

message = "978"

Bob

$\mathrm{M}=(628-678) \mathrm{mod}$
$1028=-50 \mathrm{mod}$
$1028=978$
6.8 Introduction to cryptography

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$
To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$
Example: let $\mathrm{N}=1028$
Alice wants to send a "message" 978 to Bob.

The simple encryption scheme presented here is an example of private key cryptography. In a private key cryptosystem,

Alice and Bob must meet in advance (or communicate over a reliably secure channel) to decide on the value of a secret key.

6.8 Introduction to cryptography

A simple cryptosystem
Assume that the set of all possible plaintexts come from $\mathbf{Z}_{\mathbf{N}}$ for some integer N .
Alice and Bob share a secret number $k \in \mathbf{Z}_{\mathbf{N}}$.
The security of their encryption scheme rests on the assumption that no one besides them knows the number k.

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$ To decrypt a cyphertext $c \in \mathbf{C}$: compute $m=(c-k) \bmod N$

The simple cryptosystem described here is not very secure.

1. if Eve can ever get ahold of one plaintext and its corresponding ciphertext, she can determine k and decrypt all further plaintexts from Alice to Bob.

6.8 Introduction to cryptography

A simple cryptosystem
Assume that the set of all possible plaintexts come from $\mathbf{Z}_{\mathbf{N}}$ for some integer N .
Alice and Bob share a secret number $k \in \mathbf{Z}_{\mathrm{N}}$.
The security of their encryption scheme rests on the assumption that no one besides them knows the number k.

To encrypt a plaintext $m \in \mathbf{Z}_{\mathrm{N}}$: compute $\mathrm{c}=(\mathrm{m}+\mathrm{k}) \bmod \mathrm{N}$ To decrypt a cyphertext $\mathrm{c} \in \mathbf{C}$: compute $\mathrm{m}=(\mathrm{c}-\mathrm{k}) \bmod \mathrm{N}$

The simple cryptosystem described here is not very secure.
2. English text has many well understood patterns.

For example the letters "ing" often occur in sequence but the letters "qx" almost never do. Eve will know something about the pattern of likely messages based on the patterns of English text. If she is allowed to see a large enough number of encrypted messages, she can match the pattern of ciphertexts with the pattern of likely plaintexts and infer k .

