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Chapter 3. Functions

3.4 The inverse of a function
3.5 Composition of functions
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CSI303.4 The inverse of a function

Let f be a one-to-one (injective) function, f : A  B.
The inverse function of f is the function that assigns to an element b  B 
the unique element a  A, such that f(a) = b.

denotation: f -1 f -1(b) = a
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Let f be a one-to-one (injective) function, f : A  B.
The inverse function of f is the function that assigns to an element b  B 
the unique element a  A, such that f(a) = b.

denotation: f -1 f -1(b) = a

3

A Bf(a)

a b

a   1
b   2
c   3
d   4

 5
not one-to-one

f -1(b)
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Let f be a one-to-one (injective) function, f : A  B.
The inverse function of f is the function that assigns to an element b  B 
the unique element a  A, such that f(a) = b.

denotation: f -1 f -1(b) = a

4

A Bf(a)

a b

a   1
b   2
c   3
d   4

 5
not one-to-one

A one-to-one function is invertible because we can define an inverse on it.

A function is not invertible, when we cannot define an inverse (it happens 
when the function is not one-to-one).

f -1(b)
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible;
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f -1(1)=a, f -1(2)=c, f -1(3)=b
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f -1(1)=a, f -1(2)=c, f -1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x+3. Is f invertible? If it is, what is its 
inverse.
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f -1(1)=a, f -1(2)=c, f -1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x+3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? 
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x+3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x+3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? 
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x+3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? - solve for x
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x-3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? - solve for x

y = 2x-3
14
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x-3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? - solve for x

y = 2x-3 y+3 = 2x  = x
15
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x-3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? - solve for x

y = 2x-3 y+3 = 2x  = x
16
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Example 1:
Let f be a function, f:{a,b,c}  {1,2,3}, with f(a) = 1, f(b) = 3, f(c) = 2. Is f 
invertible? If it is, define its inverse.

Solution:
a   1
b   2
c   3
one-to-one, therefore it is invertible; f-1(1)=a, f-1(2)=c, f-1(3)=b

Example 2:
Let f be a function, f : Z  Z,  f(x) = 2x-3. Is f invertible? If it is, what is its 
inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? No

Therefore, the function is one-to-one.
How to find the inverse? - solve for x

y = 2x-3 y+3 = 2x  = x
17

y3
2

f(x)
= y

x+ 3
2

x+ 3
2f -1(x)=
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Example 3:
Let f be a function, f : R  R,  f(x) = x2+2. 
Is f invertible? If it is, what is its inverse.
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Example 3:
Let f be a function, f : R  R,  f(x) = x2+2. 
Is f invertible? If it is, what is its inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? 
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Example 3:
Let f be a function, f : R  R,  f(x) = x2+2. 
Is f invertible? If it is, what is its inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? Yes

f(-1) = f(1) = 3
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Example 3:
Let f be a function, f : R  R,  f(x) = x2+2. 
Is f invertible? If it is, what is its inverse.

Solution:
Can we find two different values x

1
 and x

2
, such that f(x

1
)=f(x

2
)? Yes

f(-1) = f(1) = 3
Therefore, the function is not one-to-one, hence doesn't have an inverse.
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Let f be a function, f: R  R
Function f is increasing if for any x,y  R, where x < y the following 
inequality holds: f(x)  f(y).

xy ( x < y  f(x)  f(y) ) 

Function f is strictly increasing if for any x,y  R, where x < y the following 
inequality holds: f(x) < f(y).

xy ( x < y  f(x) < f(y) ) 

Function f is decreasing if for any x,y  R, where x < y the following 
inequality holds: f(x)  f(y).

xy ( x < y  f(x)  f(y) ) 

Function f is strictly decreasing if for any x,y  R, where x < y the 
following inequality holds: f(x) > f(y).

xy ( x < y  f(x) > f(y) )

22
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

23
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

Solution:
1) strictly increasing function:

f(x) = x, f: R  R

24
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

Solution:
1) strictly increasing function:

f(x) = x, f: R  R

2) increasing function (but not strictly increasing):
2, if x < 0

f(x) = x2+2, if 0  x  3 f: R  R 
11, if x > 3

25
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

Solution:
3) strictly decreasing function:

f(x) = -x, f: R  R

26
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

Solution:
3) strictly decreasing function:

f(x) = -x, f: R  R

4) decreasing function (but not strictly decreasing):
 6, if x   0

f(x) = -2x, if 0 < x  5 f: R  R 
-10, if x > 5

27
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Theorem
If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not 
necessary one-to-one.

Example 7:
Give an example of increasing, strictly increasing, decreasing and strictly 
decreasing functions.

Solution:
5) not increasing, not decreasing:

f(x) = x2, f: R  R

28
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Let f
1
 and f

2
 be functions from A to R. Then f

1
+f

2
 and f

1
f
2
 are also functions 

from A to R, defined by
(f

1
+f

2
)(x) = f

1
(x) + f

2
(x)

(f
1
f
2
)(x) = f

1
(x)f

2
(x)
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Let f
1
 and f

2
 be functions from A to R. Then f

1
+f

2
 and f

1
f
2
 are also functions 

from A to R, defined by
(f

1
+f

2
)(x) = f

1
(x) + f

2
(x)

(f
1
f
2
)(x) = f

1
(x)f

2
(x)

Example 2:

Let f
1
(x)=x3+3, f

1
:R  R and f

2
(x)=-x+5, f

2
:R  R

What are functions f
1
+f

2
, and f

1
f
2 
?
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Let f
1
 and f

2
 be functions from A to R. Then f

1
+f

2
 and f

1
f
2
 are also functions 

from A to R, defined by
(f

1
+f

2
)(x) = f

1
(x) + f

2
(x)

(f
1
f
2
)(x) = f

1
(x)f

2
(x)

Example 2:

Let f
1
(x)=x3+3, f

1
:R  R and f

2
(x)=-x+5, f

2
:R  R

What are functions f
1
+f

2
, and f

1
f
2 
?

Solution:
(f

1
+f

2
)(x) = (x3+3) + (-x+5) = x3-x+8
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Let f
1
 and f

2
 be functions from A to R. Then f

1
+f

2
 and f

1
f
2
 are also functions 

from A to R, defined by
(f

1
+f

2
)(x) = f

1
(x) + f

2
(x)

(f
1
f
2
)(x) = f

1
(x)f

2
(x)

Example 2:

Let f
1
(x)=x3+3, f

1
:R  R and f

2
(x)=-x+5, f

2
:R  R

What are functions f
1
+f

2
, and f

1
f
2 
?

Solution:
(f

1
+f

2
)(x) = (x3+3) + (-x+5) = x3-x+8

(f
1
f
2 
)(x) =  (x3+3) (-x+5) = -x4+5x3-3x+15
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Let f
1
 and f

2
 be functions from A to R. Then f

1
+f

2
 and f

1
f
2
 are also functions 

from A to R, defined by
(f

1
+f

2
)(x) = f

1
(x) + f

2
(x)

(f
1
f
2
)(x) = f

1
(x)f

2
(x)

Example 2:

Let f
1
(x)=x3+3, f

1
:R  R and f

2
(x)=-x+5, f

2
:R  R

What are functions f
1
+f

2
, and f

1
f
2 
?

Solution:
(f

1
+f

2
)(x) = (x3+3) + (-x+5) = x3-x+8

(f
1
f
2 
)(x) =  (x3+3) (-x+5) = -x4+5x3-3x+15

Answer: (f
1
+f

2
)(x) = x3-x+8, and (f

1
f
2 
)(x) = -x4+5x3-3x+15
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

35

A B

a b = g(a)

g(a)

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

36

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

37

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

38

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x))

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

39

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

40

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, 

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

41

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, (f   g)(b) = f(g(b)) = f(1) = l

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))

42

A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, (f   g)(b) = f(g(b)) = f(1) = l,
(f   g)(c) = f(g(c)) = f(3) = m

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))
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A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, (f   g)(b) = f(g(b)) = f(1) = l,
(f   g)(c) = f(g(c)) = f(3) = m

2. (g   f)(x) = g(f(x))

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))
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A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, (f   g)(b) = f(g(b)) = f(1) = l,
(f   g)(c) = f(g(c)) = f(3) = m

2. (g   f)(x) = g(f(x)), g   f: {1,2,3}  ?

Composition of Functions
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Let f and g be functions, g : A  B, f : B  C. Then f  g is the 
composition of two functions, defined by (f  g)(x) = f(g(x))
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A B C

a b = g(a) c = f(g(a)) = f(b)

g(a) f(g(a))

Example 4:
Let g be a function, g : {a,b,c}  {1,2,3}, and f be a function, f : {1,2,3}  
{k,l,m}, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. 
What are the functions f   g and g   f?

Solution:
1. (f   g)(x) = f(g(x)), f   g: {a,b,c}  {k,l,m};   

(f   g)(a) = f(g(a)) = f(1) = l, (f   g)(b) = f(g(b)) = f(1) = l,
(f   g)(c) = f(g(c)) = f(3) = m

2. (g   f)(x) = g(f(x)), g   f: {1,2,3}  ? undefined

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) 

Composition of Functions



CSI30

48

Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) = (3x+5) – 3 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) = (3x+5) – 3 = 3x+2 

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) = (3x+5) – 3 = 3x+2 

Example 6:
Let f be a function, and f -1 its inverse, with f(a) = b, and f -1(b)=a

a

A

b

B
f(a)

f -1(b)

Composition of Functions
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Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) = (3x+5) – 3 = 3x+2 

Example 6:
Let f be a function, and f -1 its inverse, with f(a) = b, and f -1(b)=a

We can say that (f   f -1)(b) = f (f -1(b)) = f(a) = b

a

A

b

B
f(a)

Composition of Functions

f -1(b)
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a

A

b

Bf(a)

Composition of Functions

f -1(b)

Example 5:
Let f and g be functions, g : Z  Z, f : Z  Z.
f(x) = 3x+5,   g(x) = x-3
Find f   g and g   f.

Solution:
1. (f   g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4

2. (g   f)(x) = g(f(x)) = g(3x+5) = (3x+5) – 3 = 3x+2 

Example 6:
Let f be a function, and f -1 its inverse, with f(a) = b, and f -1(b)=a

We can say that (f   f -1)(b) = f(f -1(b)) = f(a) = b, and 
(f -1   f)(a) = f -1(f(a)) = g(b) = a



CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}
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CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
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CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  
 1  
 2  
-1  
-2  
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CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  -3
 1   0
 2   3
-1  -6
-2  -9
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CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  -3
 1   0
 2   3
-1  -6
-2  -9
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CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  -3
 1   0
 2   3
-1  -6
-2  -9

63

b) f(x) = x2+2
 x  x2+2
 0   
 1   
 2   
-1   
-2   

2

4

y

x



CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  -3
 1   0
 2   3
-1  -6
-2  -9
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b) f(x) = x2+2
 x  x2+2
 0   2
 1   3
 2   6
-1   3
-2   6

2

4

y

x



CSI30Graphs of Functions

We can associate a set of pairs A  B to each function from A to B. This 
set of pairs is called the graph of a function and is often displayed 
pictorially to aid in understanding the behavior of the function.

Let f : A  B. The graph of the function is the set of ordered pairs { (a,b) | 
a  A and f(a) = b}

Example 7: 
Display the graphs of the given functions
a) f(x) = 3x-3, f: Z  Z
b) f(x) = x2+2, f: Z  Z
  
Solution:
a) f(x) = 3x-3

 x  3x-3
 0  -3
 1   0
 2   3
-1  -6
-2  -9
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b) f(x) = x2+2
 x  x2+2
 0   2
 1   3
 2   6
-1   3
-2   6

2

4

y

x

2

6

y
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