1

Chapter 3. Functions

3.4 The inverse of a function3.5 Composition of functions

3.4 The inverse of a function

Let *f* be a one-to-one (injective) function, $f : \mathbf{A} \to \mathbf{B}$. The inverse function of *f* is the function that assigns to an element $b \in \mathbf{B}$ the unique element $a \in \mathbf{A}$, such that f(a) = b.

denotation: f⁻¹

$$f^{-1}(b) = a$$

Let *f* be a one-to-one (injective) function, $f : \mathbf{A} \to \mathbf{B}$. The inverse function of *f* is the function that assigns to an element $b \in \mathbf{B}$ the unique element $a \in \mathbf{A}$, such that f(a) = b.

denotation: f⁻¹

$$f^{-1}(b) = a$$

Let *f* be a one-to-one (injective) function, $f : \mathbf{A} \to \mathbf{B}$. The inverse function of *f* is the function that assigns to an element $b \in \mathbf{B}$ the unique element $a \in \mathbf{A}$, such that f(a) = b.

denotation: f⁻¹

A one-to-one function is invertible because we can define an inverse on it.

A function is not invertible, when we cannot define an inverse (it happens when the function is not one-to-one).

Example 1:

Let f be a function, $f:\{a,b,c\} \rightarrow \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Example 1:

Let f be a function, $f:\{a,b,c\} \rightarrow \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Example 1:

Let f be a function, $f:\{a,b,c\} \rightarrow \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible;

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{-1}(1)=a, f^{-1}(2)=c, f^{-1}(3)=b$

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{-1}(1)=a, f^{-1}(2)=c, f^{-1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x+3. Is f invertible? If it is, what is its inverse.

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{-1}(1)=a, f^{-1}(2)=c, f^{-1}(3)=b$

Example 2:

Let *f* be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x+3. Is *f* invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$?

Example 1:

Let f be a function, $f:\{a,b,c\} \rightarrow \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x+3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

Therefore, the function is one-to-one.

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x+3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

Therefore, the function is one-to-one. How to find the inverse?

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x+3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x-3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

Therefore, the function is one-to-one. How to find the inverse? - solve for x

y = 2x-3

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x-3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

$$y = 2x-3$$
 $y+3 = 2x$ $\frac{y+3}{2} = x$

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x-3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

$$y = 2x-3$$
 $y+3 = 2x$ $\frac{y+3}{2} = x$ $\frac{x+3}{2} = y$
 $f(x)$ 16

Example 1:

Let f be a function, $f:\{a,b,c\} \to \{1,2,3\}$, with f(a) = 1, f(b) = 3, f(c) = 2. Is f invertible? If it is, define its inverse.

Solution:

one-to-one, therefore it is invertible; $f^{1}(1)=a, f^{1}(2)=c, f^{1}(3)=b$

Example 2:

Let f be a function, $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x-3. Is f invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? No

$$y = 2x-3$$
 $y+3 = 2x$ $\frac{y+3}{2} = x$ $\frac{x+3}{2} = y$ $f^{-1}(x) = \frac{x+3}{2}$

Example 3:

Let *f* be a function, $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2+2$. Is *f* invertible? If it is, what is its inverse.

Example 3:

Let *f* be a function, $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2+2$. Is *f* invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$?

Example 3:

Let *f* be a function, $f : \mathbf{R} \to \mathbf{R}$, $f(x) = x^2+2$. Is *f* invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? Yes f(-1) = f(1) = 3

Example 3:

Let *f* be a function, $f : \mathbf{R} \to \mathbf{R}$, $f(x) = x^2+2$. Is *f* invertible? If it is, what is its inverse.

Solution:

Can we find two different values x_1 and x_2 , such that $f(x_1)=f(x_2)$? Yes

f(-1) = f(1) = 3

Therefore, the function is not one-to-one, hence doesn't have an inverse.

Let f be a function, f:
$$\mathbf{R} \rightarrow \mathbf{R}$$

Function *f* is increasing if for any $x, y \in \mathbf{R}$, where x < y the following inequality holds: $f(x) \le f(y)$.

$$\forall x \forall y \ (x < y \rightarrow f(x) \le f(y))$$

Function *f* is strictly increasing if for any $x, y \in \mathbf{R}$, where x < y the following inequality holds: f(x) < f(y).

 $\forall x \forall y \ (x < y \rightarrow f(x) < f(y))$

Function *f* is decreasing if for any $x,y \in \mathbf{R}$, where x < y the following inequality holds: $f(x) \ge f(y)$.

 $\forall x \forall y \ (x < y \rightarrow f(x) \ge f(y))$

Function *f* is strictly decreasing if for any $x,y \in \mathbf{R}$, where x < y the following inequality holds: f(x) > f(y).

$$\forall x \forall y (x < y \rightarrow f(x) > f(y))$$

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

CSI30

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

 CSI_{30}

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

CSI30

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

 CSI_{30}

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

Theorem

If function is strictly increasing or strictly decreasing, then it is one-to-one.

However a function that is increasing or decreasing (but not strictly) is not necessary one-to-one.

Example 7:

Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R**, defined by

 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1 f_2)(x) = f_1(x) f_2(x)$

Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R**, defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example 2:

Let $f_1(x) = x^3 + 3$, $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2(x) = -x + 5$, $f_2: \mathbb{R} \to \mathbb{R}$ What are functions $f_1 + f_2$, and $f_1 f_2$?

Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R**, defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example 2:

Let $f_1(x) = x^3 + 3$, $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2(x) = -x + 5$, $f_2: \mathbb{R} \to \mathbb{R}$ What are functions $f_1 + f_2$, and $f_1 f_2$?

<u>Solution</u>: $(f_1 + f_2)(x) = (x^3 + 3) + (-x + 5) = x^3 - x + 8$

Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R**, defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example 2:

Let $f_1(x) = x^3 + 3$, $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2(x) = -x + 5$, $f_2: \mathbb{R} \to \mathbb{R}$ What are functions $f_1 + f_2$, and $f_1 f_2$?

<u>Solution</u>: $(f_1 + f_2)(x) = (x^3 + 3) + (-x + 5) = x^3 - x + 8$ $(f_1 f_2)(x) = (x^3 + 3) (-x + 5) = -x^4 + 5x^3 - 3x + 15$

Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R**, defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example 2:

Let $f_1(x) = x^3 + 3$, $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2(x) = -x + 5$, $f_2: \mathbb{R} \to \mathbb{R}$ What are functions $f_1 + f_2$, and $f_1 f_2$?

Solution: $(f_1 + f_2)(x) = (x^3 + 3) + (-x + 5) = x^3 - x + 8$ $(f_1 f_2)(x) = (x^3 + 3) (-x + 5) = -x^4 + 5x^3 - 3x + 15$

<u>Answer</u>: $(f_1 + f_2)(x) = x^3 - x + 8$, and $(f_1 f_2)(x) = -x^4 + 5x^3 - 3x + 15$

CSI30

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Solution:

1. $(f \circ g)(x) = f(g(x))$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Solution:

1.
$$(f \circ g)(x) = f(g(x)), f \circ g: \{a, b, c\} \rightarrow \{k, l, m\};$$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Solution:

1.
$$(f \circ g)(x) = f(g(x)), f \circ g: \{a, b, c\} \rightarrow \{k, l, m\};$$

 $(f \circ g)(a) = f(g(a)) = f(1) = l,$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Solution:

1.
$$(f \circ g)(x) = f(g(x)), f \circ g: \{a, b, c\} \rightarrow \{k, l, m\};$$

 $(f \circ g)(a) = f(g(a)) = f(1) = l, (f \circ g)(b) = f(g(b)) = f(1) = l$

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Solution:

1. (
$$f \circ g$$
)(x) = $f(g(x))$, $f \circ g$: { a,b,c } → { k,l,m };
($f \circ g$)(a) = $f(g(a))$ = $f(1)$ = l , ($f \circ g$)(b) = $f(g(b))$ = $f(1)$ = l ,
($f \circ g$)(c) = $f(g(c))$ = $f(3)$ = m

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

 CSI_{30}

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

 CSI_{30}

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

1.
$$(f \circ g)(x) = f(g(x)), f \circ g: \{a,b,c\} \rightarrow \{k,l,m\};$$

 $(f \circ g)(a) = f(g(a)) = f(1) = l, (f \circ g)(b) = f(g(b)) = f(1) = l,$
 $(f \circ g)(c) = f(g(c)) = f(3) = m$
2. $(g \circ f)(x) = g(f(x)), g \circ f: \{1,2,3\} \rightarrow ?$

44

Let *f* and *g* be functions, $g : \mathbf{A} \to \mathbf{B}$, $f : \mathbf{B} \to \mathbf{C}$. Then $f \circ g$ is the composition of two functions, defined by $(f \circ g)(x) = f(g(x))$

 CSI_{30}

Example 4:

Let g be a function, $g : \{a,b,c\} \rightarrow \{1,2,3\}$, and f be a function, $f : \{1,2,3\} \rightarrow \{k,l,m\}$, with g(a) = 1, g(b) = 1, g(c) = 3, f(1) = l, f(2) = k, f(3) = m. What are the functions f ° g and g ° f?

1.
$$(f \circ g)(x) = f(g(x)), f \circ g: \{a,b,c\} \to \{k,l,m\};$$

 $(f \circ g)(a) = f(g(a)) = f(1) = l, (f \circ g)(b) = f(g(b)) = f(1) = l,$
 $(f \circ g)(c) = f(g(c)) = f(3) = m$
2. $(g \circ f)(x) = g(f(x)), g \circ f: \{1,2,3\} \to ?$ undefined
45

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x))$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) =$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2. $(g \circ f)(x) = g(f(x))$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2. $(g \circ f)(x) = g(f(x)) = g(3x+5)$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2.
$$(g \circ f)(x) = g(f(x)) = g(3x+5) = (3x+5) - 3$$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2.
$$(g \circ f)(x) = g(f(x)) = g(3x+5) = (3x+5) - 3 = 3x+2$$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2.
$$(g \circ f)(x) = g(f(x)) = g(3x+5) = (3x+5) - 3 = 3x+2$$

Example 6:

Let f be a function, and f^{-1} its inverse, with f(a) = b, and $f^{-1}(b) = a$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2.
$$(g \circ f)(x) = g(f(x)) = g(3x+5) = (3x+5) - 3 = 3x+2$$

Example 6:

Let f be a function, and f^{-1} its inverse, with f(a) = b, and $f^{-1}(b) = a$

We can say that $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$

Example 5:

Let *f* and *g* be functions, $g : \mathbb{Z} \to \mathbb{Z}$, $f : \mathbb{Z} \to \mathbb{Z}$. f(x) = 3x+5, g(x) = x-3Find f ° g and g ° f.

Solution:

1. $(f \circ g)(x) = f(g(x)) = f(x-3) = 3(x-3) + 5 = 3x-9+5 = 3x-4$

2.
$$(g \circ f)(x) = g(f(x)) = g(3x+5) = (3x+5) - 3 = 3x+2$$

Example 6:

Let f be a function, and f^{-1} its inverse, with f(a) = b, and $f^{-1}(b) = a$

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

Example 7: Display the graphs of the given functions a) f(x) = 3x-3, $f: \mathbb{Z} \to \mathbb{Z}$ b) $f(x) = x^2+2$, f: $\mathbb{Z} \to \mathbb{Z}$

Solution: a) f(x) = 3x-3 $x \quad 3x-3$ 0 1 2 -1 -2

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

Example 7: Display the graphs of the given functions **a)** f(x) = 3x-3, $f: \mathbb{Z} \to \mathbb{Z}$ **b)** $f(x) = x^2+2$, f: $\mathbb{Z} \to \mathbb{Z}$

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

CSI30

63

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A}$ and f(a) = b}

CSI30

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A}$ and f(a) = b}

CSI30

We can associate a set of pairs $A \times B$ to each *function* from A to B. This set of pairs is called the graph of a function and is often displayed pictorially to aid in understanding the behavior of the function.

Let $f : \mathbf{A} \to \mathbf{B}$. The graph of the function is the set of ordered pairs { $(a,b) | a \in \mathbf{A} \text{ and } f(a) = b$ }

